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Notes on the GSW code
gsw_z from_p
for calculating height z from pressure p

Height z is measured positive upwards, so it is negative in the ocean. First, note that we
use the following version of specific volume anomaly,
6 =V(S.0,p) - V(Ss0.0°C, p)- ey

That is, the reference Absolute Salinity is the Absolute Salinity of the Standard Ocean,
Sqo =35.16504 g kg™, and the reference “temperature” is a fixed value of Conservative
Temperature of zero degrees Celsius. Dynamic height anomaly ¥ is then defined by
Eqn. (3.27.1) of IOC et al. (2010) as follows

p
¥ =-[6(p)dP, 2)
Ro
where B =101 325Pa is the standard atmosphere pressure.

The vertical integral of the hydrostatic equation (P, = -gp or g =-VP,)is (from
Eqn. (3.32.3) of the TEOS-10 Manual (IOC et al. (2010)))

O =N

P P
Ndz = @ — VAP = — [V(Se.,0°C, p’) AP’ + ¥ + @°
g(2’) dz P{)V(p) gov( so p) Tt (3.233)

= - H(SSO,O"C, p) + ¥ +0°

Here ®° is the geopotential at zero sea pressure on this vertical cast. We use the 48-term

based expression for enthalpy (Eqn. (A.30.6) of the TEOS-10 Manual), recognizing that

because © = 0°C many of the coefficients on pages 132 of the TEOS-10 Manual are zero,

so the evaluation of Eqn. (A.30.6) is less computationally expensive than it may appear.

The library function gsw_enthalpy_SSO_0_p(p) is used to evaluate 548(550, 0°C, p)

efficiently at these fixed values of Absolute Salinity and Conservative Temperature.
Writing the gravitational acceleration of Eqn. (D.3) of IOC et al. (2010) as

9 =9(42) = 9(4.0)(1-72), 4)
we see that Eqn. (3.32.3) becomes
h*®(Sgg, 0°C, p) — ¥ - <D°+g(¢,0)(z—%yzz) - 0. 6)

When the gsw_z_from_p code is called with two arguments, as in gsw_z_from_p(p,lat),
¥+ @° is ignored in Eqn. (5) and this quadratic expression is solved for the height z.
We do this using the standard quadratic solution equation, but for z*. This is done so
that the result is accurate as pressure tends to zero, and so that the answer also converges
to the correct solution when the quadratic term y tends to zero (since there may be some
applications where it is preferable to assume that the gravitational acceleration is depth-
independent). Hence we evaluate z from the equation
48 o 0
. 2(h (SSO,OC,p)—‘P—CI)) | ©
9(9,0)+ \/gz(¢,o) + 2yg(¢,0)(ﬁ48(sso, 0°C,p) — ¥ - c1>°)

Note again that height z is negative in the ocean. When the code is called with three
arguments, the third argument is taken to dynamic height ¥ and the geopotential at
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zero pressure ®° is taken to be zero. When the code is called with four arguments the
third argument is taken to be ¥ and the fourth ®°. The dynamic height anomaly ¥
can be evaluated using the GSW function gsw_geo_strf_dyn_height_CT, noting that the
reference pressure in the call to this function must be zero sea pressure.

Note that in Eqn. (5) the last term, g (¢,0) (z - %y 22), can be written as zg where
g is the mean gravitational acceleration between z=0 and the height concerned.
Recognizing this, the height z output from this algorithm is also equal to

(h®(Sso, 0°C,p) - ¥ = @°)
. .

7 =-—

7)

Notes on the GSW code

gsw_p_from z
for calculating pressure p from height z

In the gsw_p_from_z code we evaluate pressure p using a modified Newton-Raphson
iteration procedure so that the pressure so obtained is exactly consistent with the
“forward” calculation of z from p via the function gsw_z_from_p.

When the gsw_p_from_z code is called with two arguments, as in
gsw_p_from_z(z,lat), we ignore ¥ + ®° while solving Eqn. (8) below. Note again that
height z is negative in the ocean. When the code is called with three arguments, the
third argument is taken to dynamic height ¥ and the geopotential at zero pressure ®° is
taken to be zero. When the code is called with four arguments the third argument is
taken to be ¥ and the fourth ®°. The dynamic height anomaly ¥ can be evaluated
using the GSW function gsw_geo_strf _dyn_height CT, noting that the reference
pressure in the call to this function must be zero sea pressure.

A good starting point for pressure is found by using the Saunders (1981) quadratic
expression relating depth to a quadratic of pressure; we solve this quadratic using the
standard quadratic solution formula but for p™ instead of for p, so that the solution is
well-behaved as z goes to zero.

Hence, given z, we have a zeroth estimate of pressure, p,, from the Saunders (1981)
quadratic expression. Now we want to solve (see Eqn. (3.32.3) of the TEOS-10 Manual,
I0C et al. (2010)),

f(p)=0, where f(p)="h"(s;,,0°C,p)-¥-0"+g(90)(z-3r2*). (8
The derivative of f (p) is approximately
f’(p) = 10*V* (Sg,0°C, p), ©)

and this is available from the 48-term rational function expression for seawater density
(and since ® =0°C, ¥* (Ss0,0°C, p) is particularly simple to evaluate using the library
function gsw_specvol_SSO_0_p(p)). The factor of 10* in Eqn. (9) is because we want to
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solve for pressure in dbar rather than in the natural SI unit for pressure of Pa. That is,
Eqn. (9) is the derivative of f (p) with respect to pressure p in dbar.

After finding p, we evaluate f (po) = 548(850,0°C, po) Y-+ g(gb,O) (z - %y 22) ,
then calculate f’(py) = 10°7* (S¢5,0°C, py) and use these values of f(p,) and f'(p,)
to form an intermediate pressure estimate p; as (this is a standard Newton’s method
iteration)

P =po— f(po)/ (o) - ®)

Then we form p,, =05(p,+p,) and evaluate f’(p,) =10*V*(Ss,,0°C,p,) and use
f(py) and f’(p,,) to calculate p, from

P, =po— f(Po)/f'(Pm) - €)

This is one full step of the “modified Newton-Raphson” iteration procedure of
McDougall and Wotherspoon (2013), and this one modified step gives pressure to better
than 1.6x10™° dbar (which is essentially machine precision) down to a height z of
-8000m. The gsw_p_from_z function performs this one full iteration of the modified
Newton-Raphson iteration.
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Below is section 3.32 of the TEOS-10 Manual (IOC et al. (2010)).

3.32 Pressure to height conversion
The vertical integral of the hydrostatic equation (g = —VvP,) can be written as
z p p
[9(z)dz’ =@ —[v(p)dP" = - [V(Ss,0°C,p’) dP" + ¥ + @°
0 R R (3.32.1)
= —N(S4,0°C, p) + ¥ +@°,
where the dynamic height anomaly ¥ is expressed in terms of the specific volume

anomaly 6= V(Sa.0,p) —V(Ss0,0°C, p) by
P
¥ = - [5(p)dP, (3.32.2)
P

where B, =101325Pa is the standard atmosphere pressure. Writing the gravitational
acceleration of Eqn. (D.3) as g=g(¢,z) =9(4,0) (1-yz), the left-hand side of Eqn.
(3.32.1) becomes g(¢,0) (z —%}/22), and using the 48-term expression for the specific
enthalpy of Standard Seawater, Eqn. (3.32.1) becomes

h*(Sgo, 0°C, p) =¥ — @° +g($,0) (z ~ iy 22) - 0. (3.32.3)

This is the equation that is solved for height z in the GSW function gsw_z_from_p. It is
traditional to ignore ¥ + ®° when converting between pressure and height, and this can



Notes on gsw_z_from_p and on gsw_p_from_z 4

be done by simply calling this function with only two arguments, as in
gsw_z_from_p(p,lat). Ignoring ¥ + ®° makes a difference to z of up to 4m at 5000
dbar. Note that height z is negative in the ocean. When the code is called with three
arguments, the third argument is taken to be ¥ + ®° and this is used in the solution of
Egn. (3.32.3). Dynamic height anomaly ¥ can be evaluated using the GSW function
gsw_geo_strf_dyn_height. The GSW function gsw_p_from_z is the exact inverse
function of gsw_z_from_p; these functions yield outputs that are consistent with each
other to machine precision.

When vertically integrating the hydrostatic equation P, =—gp in the context of an
ocean model where Absolute Salinity S, and Conservative Temperature © are
piecewise constant in the vertical, the geopotential (Eqn. (3.24.2))

® = jg(z)dz = &'- Tv(p’) dP’, (3.32.4)
0 R

can be evaluated as a series of exact differences. If there are a series of layers of index i
separated by pressures p' and p'! (with p'>p') then the integral can be expressed
(making use of (3.7.5), namely hP| 500 = ﬁp =v) as a sum over n layers of the differences
in specific enthalpy so that

P N~/ . L N S

® = [v(p)dP’ = &°- z[h(s;\,@', p'+1)— h(s,g,@', p')]. (3.32.5)
R i=1

The difference in enthalpy at two different pressures for given values of S, and © is

available in the GSW Oceanographic Toolbox via the function gsw_enthalpy_diff. The

summation of a series of such differences in enthalpy occurs in the GSW functions to

evaluate two geostrophic streamfunctions from piecewise-constant vertical property

profiles, gsw_geo_strf_dyn_height_pc and gsw_geo_strf_isopycnal_pc.



