Notes on the function gsw_isopycnal_vs_ntp_CT_ratio(SA,CT,p)

This function \texttt{gsw_isopycnal_vs_ntp_CT_ratio}(SA,CT,p) evaluates the “isopycnal temperature gradient ratio” defined by (from section 3.17 of the TEOS-10 Manual, IOC et al. (2010))

\[G^\theta = \frac{[R_p - 1]}{[R_p/r - 1]} . \]

This is the ratio of the (parallel) gradient of Conservative Temperature in a potential density surface, \(\nabla_s \Theta \), to that in a neutral tangent plane, \(\nabla_n \Theta \), since, from Eqn. (3.17.3) of the TEOS-10 Manual,

\[\nabla_s \Theta = r \frac{[R_p - 1]}{[R_p/r - 1]} \nabla_n \Theta = G^\theta \nabla_n \Theta . \]

This function, \texttt{gsw_isopycnal_vs_ntp_CT_ratio}(SA,CT,p), uses the 75-term polynomial function expression for specific volume \texttt{gsw_specvol}(SA,CT,p). This 75-term polynomial expression for specific volume is discussed in Roquet et al. (2015) and in appendix A.30 and appendix K of the TEOS-10 Manual (IOC et al. (2010)). For dynamical oceanography we may take the 75-term polynomial expression for specific volume as essentially reflecting the full accuracy of TEOS-10.

References

Here follows section 3.17 of the TEOS-10 Manual (IOC et al. (2010)).

3.17 Property gradients along potential density surfaces

The two-dimensional gradient of a scalar \(\varphi \) along a potential density surface \(\nabla_s \varphi \) is related to the corresponding gradient in the neutral tangent plane \(\nabla_n \varphi \) by

\[\nabla_s \varphi = \nabla_n \varphi + \frac{\varphi}{\Theta} \frac{R_p}{R_p - r} \nabla_n \Theta . \]

(from McDougall (1987a)), where \(r \) is the ratio of the slope on the \(S_\Lambda - \Theta \) diagram of an isoline of potential density with reference pressure \(p_t \) to the slope of a potential density surface with reference pressure \(p \), and is defined by

\[r = \frac{\alpha^\theta (S_\Lambda, \Theta, p_t)/\beta^\theta (S_\Lambda, \Theta, p_t)}{\alpha^\theta (S_\Lambda, \Theta, p)/\beta^\theta (S_\Lambda, \Theta, p)} . \]
Substituting $\varphi = \Theta$ into (3.17.1) gives the following relation between the (parallel) isopycnal and epineutral gradients of Θ

$$\nabla_\sigma \Theta = \left[\frac{r}{R_p} - \frac{1}{r} \right] \nabla_n \Theta = G^\Theta \nabla_n \Theta$$ \hspace{1cm} (3.17.3)

where the “isopycnal temperature gradient ratio”

$$G^\Theta = \left[\frac{R_p - 1}{R_p / r - 1} \right]$$ \hspace{1cm} (3.17.4)

has been defined as a shorthand expression for future use. This ratio G^Θ is available in the GSW Toolbox from the algorithm $\text{gsw_isopycnal_vs_ntp_CT_ratio}$, while the ratio r of Eqn. (3.17.2) is available there as $\text{gsw_isopycnal_slope_ratio}$. Substituting $\varphi = S_A$ into Eqn. (3.17.1) gives the following relation between the (parallel) isopycnal and epineutral gradients of S_A

$$\nabla_\sigma S_A = \left[\frac{R_p - 1}{R_p / r - 1} \right] \nabla_n S_A = \frac{G^\Theta}{r} \nabla_n S_A.$$ \hspace{1cm} (3.17.5)