Notes on the function, gsw_entropy_from_CT(SA, CT), which evaluates specific entropy from Conservative Temperature

This function, gsw_entropy_from_CT, finds \(\eta = \eta(S_A, \Theta) \), specific entropy as a function of Absolute Salinity and Conservative Temperature. This is done by first evaluating potential temperature \(\theta \) (with reference pressure \(p_f = 0 \) dbar) from the function gsw_pt_from_CT and then calling the temperature derivative of the Gibbs function as follows,

\[
\eta = \tilde{\eta}(S_A, \theta) = -g_T(S_A, \theta, p=0).
\]

(1)

Here follows appendix A.10 of the TEOS-10 Manual (IOC et al. (2010)).

A.10 Proof that \(\theta = \theta(S_A, \eta) \) and \(\Theta = \Theta(S_A, \theta) \)

Consider changes occurring at the sea surface, (specifically at \(p = 0 \) dbar) where the temperature is the same as the potential temperature referenced to 0 dbar and the increment of pressure \(dp \) is zero. Regarding specific enthalpy \(h \) and chemical potential \(\mu \) to be functions of entropy \(\eta \) (in place of temperature \(t \)), that is, considering the functional form of \(h \) and \(\mu \) to be \(h = h(S_A, \eta, p) \) and \(\mu = \mu(S_A, \eta, p) \), it follows from the fundamental thermodynamic relation (Eqn. (A.7.1)) that

\[
\begin{align*}
\hat{h}_\eta(S_A, \eta, 0) \, d\eta + \hat{s}_{S_A}(S_A, \eta, 0) \, dS_A &= (T_0 + \theta) d\eta + \mu(S_A, \eta, 0) \, dS_A. \\
\end{align*}
\]

(A.10.1)

which shows that specific entropy \(\eta \) is simply a function of Absolute Salinity \(S_A \) and potential temperature \(\theta \), that is \(\eta = \eta(S_A, \theta) \), with no separate dependence on pressure. It follows that \(\theta = \theta(S_A, \eta) \).

Similarly, from the definition of potential enthalpy and Conservative Temperature in Eqns. (3.2.1) and (3.3.1), at \(p = 0 \) dbar it can be seen that the fundamental thermodynamic relation (A.7.1) implies

\[
\begin{align*}
c^\theta_p \, d\Theta &= (T_0 + \theta) d\eta + \hat{\mu}(S_A, \theta, 0) \, dS_A. \\
\end{align*}
\]

(A.10.2)

This shows that Conservative Temperature is also simply a function of Absolute Salinity and potential temperature, \(\Theta = \Theta(S_A, \theta) \), with no separate dependence on pressure. It then follows that \(\Theta \) may also be expressed as a function of only \(S_A \) and \(\eta \). It follows that \(\Theta \) has the “potential” property.