Notes on the function, gsw_CT_from_entropy(SA, entropy), which evaluates Conservative Temperature from specific entropy This function, $\mathbf{gsw_CT_from_entropy}$, finds Conservative Temperature for given values of Absolute Salinity and specific entropy, $\Theta = \Theta(S_A, \eta)$. The function amounts to the following simple calls to two other GSW functions, ``` pt = gsw_pt_from_entropy(SA,entropy); CT = gsw_CT_from_pt(SA,pt); ``` Here follows appendix A.10 of the TEOS-10 Manual (IOC et al. (2010)). ## **A.10 Proof that** $\theta = \theta(S_A, \eta)$ and $\Theta = \Theta(S_A, \theta)$ Consider changes occurring at the sea surface, (specifically at p=0 dbar) where the temperature is the same as the potential temperature referenced to 0 dbar and the increment of pressure dp is zero. Regarding specific enthalpy h and chemical potential μ to be functions of entropy η (in place of temperature t), that is, considering the functional form of h and μ to be $h=\widehat{h}\big(S_A,\eta,p\big)$ and $\mu=\widehat{\mu}\big(S_A,\eta,p\big)$, it follows from the fundamental thermodynamic relation (Eqn. (A.7.1)) that $$\widehat{h}_{\eta}(S_{A},\eta,0) d\eta + \widehat{h}_{S_{A}}(S_{A},\eta,0) dS_{A} = (T_{0}+\theta) d\eta + \mu(S_{A},\eta,0) dS_{A}, \qquad (A.10.1)$$ which shows that specific entropy η is simply a function of Absolute Salinity S_A and potential temperature θ , that is $\eta = \eta(S_A, \theta)$, with no separate dependence on pressure. It follows that $\theta = \theta(S_A, \eta)$. Similarly, from the definition of potential enthalpy and Conservative Temperature in Eqns. (3.2.1) and (3.3.1), at p = 0 dbar it can be seen that the fundamental thermodynamic relation (A.7.1) implies $$c_p^0 d\Theta = \left(T_0 + \theta\right) d\eta + \tilde{\mu}\left(S_A, \theta, 0\right) dS_A. \tag{A.10.2}$$ This shows that Conservative Temperature is also simply a function of Absolute Salinity and potential temperature, $\Theta = \Theta(S_A, \theta)$, with no separate dependence on pressure. It then follows that Θ may also be expressed as a function of only S_A and η . It follows that Θ has the "potential" property.