Contents
USAGE:
[v_SA_SA_wrt_h, v_SA_h, v_h_h] = ...
gsw_specvol_second_derivatives_wrt_enthalpy_CT_exact(SA,CT,p)
DESCRIPTION:
Calculates the following three second-order derivatives of specific
volume (v),
(1) v_SA_SA_wrt_h, second-order derivative with respect to Absolute
Salinity at constant h & p.
(2) v_SA_h, second-order derivative with respect to SA & h at
constant p.
(3) v_h_h, second-order derivative with respect to h at
constant SA & p.
Note that this function uses the full Gibbs function. There is an
alternative to calling this function, namely
gsw_specvol_second_derivatives_wrt_enthalpy(SA,CT,p), which uses the
computationally efficient 75-term expression for specific volume in
terms of SA, CT and p (Roquet et al., 2015).
INPUT:
SA = Absolute Salinity [ g/kg ]
CT = Conservative Temperature [ deg C ]
p = sea pressure [ dbar ]
(ie. absolute pressure - 10.1325 dbar)
SA & CT need to have the same dimensions.
p may have dimensions 1x1 or Mx1 or 1xN or MxN, where SA & CT are MxN.
OUTPUT:
v_SA_SA_wrt_h = The second-order derivative of specific volume with
respect to Absolute Salinity at constant h & p.
[ (m^3/kg)(g/kg)^-2 ]
v_SA_h = The second-order derivative of specific volume with respect to
SA and h at constant p. [ (m^3/kg)(g/kg)^-1 (J/kg)^-1 ]
v_h_h = The second-order derivative with respect to h at
constant SA & p. [ (m^3/kg)(J/kg)^-2 ]
EXAMPLE:
SA = [34.7118; 34.8915; 35.0256; 34.8472; 34.7366; 34.7324;]
CT = [28.8099; 28.4392; 22.7862; 10.2262; 6.8272; 4.3236;]
p = [ 10; 50; 125; 250; 600; 1000;]
[v_SA_SA_wrt_h, v_SA_h, v_h_h] = ...
gsw_specvol_second_derivatives_wrt_enthalpy_CT_exact(SA,CT,p)
v_SA_SA_wrt_h =
1.0e-08 *
0.082738436622270
0.082820472626935
0.087012384310439
0.098568931415547
0.100885432010628
0.102276246439309
v_SA_h =
1.0e-12 *
0.326217843241685
0.327716371538871
0.375607041087142
0.545165574576489
0.589676769358126
0.616103304530989
v_h_h =
1.0e-15 *
0.447981834829075
0.449172935265639
0.486697221526866
0.598047368579426
0.627835291967017
0.646576186556108
AUTHOR:
Paul Barker and Trevor McDougall [ help@teos-10.org ]
VERSION NUMBER:
3.06.15 (1st June, 2022)
REFERENCES:
IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. Available from the TEOS-10 web site.
McDougall, T.J., D.R. Jackett, D.G. Wright and R. Feistel, 2003:
Accurate and computationally efficient algorithms for potential
temperature and density of seawater. J. Atmosph. Ocean. Tech., 20,
pp. 730-741.
Roquet, F., G. Madec, T.J. McDougall and P.M. Barker, 2015: Accurate
polynomial expressions for the density and specific volume of seawater
using the TEOS-10 standard. Ocean Modelling, 90, pp. 29-43.
http://dx.doi.org/10.1016/j.ocemod.2015.04.002
The software is available from http://www.TEOS-10.org