gsw_geo_strf_dyn_height

dynamic height anomaly (75-term equation)

Contents

USAGE:

geo_strf_dyn_height = gsw_geo_strf_dyn_height(SA,CT,p,p_ref)

DESCRIPTION:

Calculates dynamic height anomaly as the integral of specific volume
anomaly from the pressure p of the "bottle" to the reference pressure
p_ref.
Hence, geo_strf_dyn_height is the dynamic height anomaly with respect
to a given reference pressure.  This is the geostrophic streamfunction 
for the difference between the horizontal velocity at the pressure 
concerned, p, and the horizontal velocity at p_ref.  Dynamic height 
anomaly is the geostrophic streamfunction in an isobaric surface.  The 
reference values used for the specific volume anomaly are 
SSO = 35.16504 g/kg and CT = 0 deg C.  This function calculates 
specific volume anomaly using the computationally efficient 75-term
expression for specific volume (Roquet et al., 2015). 
This function evaluates the pressure integral of specific volume using 
SA and CT interpolated using the MRST-PCHIP method of Barker and 
McDougall (2020).  This "curve fitting" method uses a Piecewise Cubic 
Hermite Interpolating Polynomial to produce a smooth curve with minimal
artificial watermasses between the observed data points.  
Note that the 75-term equation has been fitted in a restricted range of 
parameter space, and is most accurate inside the "oceanographic funnel" 
described in McDougall et al. (2003).  The GSW library function 
"gsw_infunnel(SA,CT,p)" is avaialble to be used if one wants to test if 
some of one's data lies outside this "funnel". 
TEOS-10
Click for a more detailed description of dynamic
height anomaly.

INPUT:

SA   =  Absolute Salinity                                       [ g/kg ]
CT   =  Conservative Temperature                               [ deg C ]
p    =  sea pressure                                            [ dbar ]
        ( i.e. absolute pressure - 10.1325 dbar )
p_ref = reference pressure                                      [ dbar ]
        ( i.e. reference absolute pressure - 10.1325 dbar )
SA & CT need to have the same dimensions.
p may have dimensions Mx1 or 1xN or MxN, where SA & CT are MxN.
p_ref needs to be a single value, it can have dimensions 1x1 or Mx1 or  
1xN or MxN.

OUTPUT:

geo_strf_dyn_height = dynamic height anomaly                 [ m^2/s^2 ]

EXAMPLE 1:

SA = [34.7118; 34.8915; 35.0256; 34.8472; 34.7366; 34.7324;]
CT = [28.8099; 28.4392; 22.7862; 10.2262;  6.8272;  4.3236;]
p =  [     10;      50;     125;     250;     600;    1000;]
p_ref = 1000
geo_strf_dyn_height = gsw_geo_strf_dyn_height(SA,CT,p,p_ref)
geo_strf_dyn_height =
  16.829126675036644
  14.454693755102685
  10.727894578402342
   7.699845274649316
   3.578081589449148
                   0

EXAMPLE 2:

SA = [34.7118; 34.8915; 35.0256; 34.8472; 34.7366; 34.7324;]
CT = [28.8099; 28.4392; 22.7862; 10.2262;  6.8272;  4.3236;]
p =  [     10;      50;     125;     250;     600;    1000;]
p_ref = 500
geo_strf_dyn_height = gsw_geo_strf_dyn_height(SA,CT,p,p_ref)
geo_strf_dyn_height =
  12.172172845782585
   9.797739925848624
   6.070940749148281
   3.042891445395256
  -1.078872239804912
  -4.656953829254061

AUTHOR:

Paul Barker and Trevor McDougall   [ help@teos-10.org ]

VERSION NUMBER:

3.06.12 (29th July, 2021)

REFERENCES:

Barker, P.M., and T.J. McDougall, 2020: Two interpolation methods using 
 multiply-rotated piecewise cubic hermite interpolating polynomials. 
 J. Atmosph. Ocean. Tech., 37, pp. 605-619. 
 http://dx.doi.org/10.1175/JTECH-D-19-0211.1
IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
 seawater - 2010: Calculation and use of thermodynamic properties.
 Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
 UNESCO (English), 196 pp.  Available from the TEOS-10 web site.
  See Eqn. (3.7.3) and section 3.27 of this TEOS-10 Manual.
McDougall, T.J., D.R. Jackett, D.G. Wright and R. Feistel, 2003: 
 Accurate and computationally efficient algorithms for potential 
 temperature and density of seawater.  J. Atmosph. Ocean. Tech., 20,
 pp. 730-741.
Roquet, F., G. Madec, T.J. McDougall and P.M. Barker, 2015: Accurate
 polynomial expressions for the density and specific volume of seawater 
 using the TEOS-10 standard.  Ocean Modelling, 90, pp. 29-43. 
 http://dx.doi.org/10.1016/j.ocemod.2015.04.002
The software is available from http://www.TEOS-10.org