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When globally integrated over complete density surfaces, the total transport due
to these non-linear processes can be calculated. In green is the mean dianeutral
transport from the ill-defined nature of “neutral surfaces”, blue is the dianeutral

transport due to cabbeling, red due to thermobaricity, and black is the total
global dianeutral transport due to the sum of these three non-linear processes.

We conclude from this that while the mean dianeutral transport from the ill-
defined nature of “neutral surfaces” is of leading order locally, it spatially

averages to a very small transport over a complete density surface. By contrast,

cabbeling and thermobaricity are predominantly downwards advection

everywhere, so there is little such cancellation on area integration with these

processes.
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Rotation of the horizontal velocity with height

Define the angle ¢ (measured counter-clockwise) of the horizontal velocity v
with respect to due east so that

v = |v‘(cos<p, sin(p) . (V_rotate_01)
Vertically differentiate this equation and take the cross product with v to obtain
VXv_=Kk@_|V ? , (V_rotate_02)

which shows that the rate of spiraling of the horizontal velocity vector in the
vertical ¢_ is proportional to the amount by which this velocity is not parallel to
the direction of the “thermal wind” shear v_. The last equation can be rewritten
as

2
V‘ = kK-vXv_=uv —vu_ = —v-kKxXv_=-v-VXv, (V_rotate_03)

?.
which demonstrates that the rotation of the horizontal velocity with height is
proportional to the helicity of the horizontal velocity, v-V xv.

Now, substituting Eqn. (3.12.3) for the “thermal wind” v_, namely

— (1 1 - - N
fv. _(;)kavzp+;k><vz (P) = -£kxV,p = LkxV, P| (3.123)

into Eqn. (V_rotate_03) we find

0. V‘z =-vkxv_ = % v-V P. (V_rotate_04)
Under the usual Boussinesq approximation —( gp)_1 V, P is set equal to the slope
of the neutral tangent plane, V z, so that we have

0. V‘z ~ _NT,Z vV z, (V_rotate_05)

and since the vertical velocity through geopotentials, w, is given by the simple
geometrical equation (where e is the vertical velocity through the neutral
tangent plane),

wo=z| + v-Vz+te, (V_rotate_06)
we have
2 z2
0, V‘ = -4 (w —e—z n), (V_rotate_07)

showing that the rotation of the horizontal velocity vector with height is not
simply proportional to the vertical velocity of the flow but rather only to the
sliding motion along the neutral tangent plane, v-V z.

A Kk

(projection of) m

- ™ Kk xV, into page
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The absolute velocity vector in the ocean

Neutral helicity is proportional to the component of the vertical shear of the
geostrophic velocity (v_, the “thermal wind”) in the direction of the
temperature gradient along the neutral tangent plane V, 0, since, from Eqn.
(3.12.3), namely fv_= N—; kxV P, and the third line of (3.13.2), namely
H'=g"! Nsze(VanVnG)j-k , we find that

H"=pI?fv.-V,0. (3.13.4)

This connection between neutral helicity and an aspect of the horizontal velocity
vector motivates the idea that the mean velocity might be somehow linked to
neutral helicity, and this link is established in this section.

The absolute velocity vector in the ocean can be written as a closed
expression involving the neutral helicity, and this expression is derived as
follows. First the water-mass transformation equation (A.23.1) is written as

VV,0 = 1.V, (r'KV,0)+KeN 7O, (CPV,0-V,6 + TV 6.V, P)
2 (3.13.7)

~yd’S N
+ DB%gN 0’ dé)? -¥Y.VO-0,,

where the thickness-weighted mean velocity of density-coordinate averaging, v,
has been written as Vv = v+'¥ , that is, as the sum of the Eulerian-mean
horizontal velocity v and the quasi-Stokes eddy-induced horizontal velocity ‘¥,
(McDougall and McIntosh (2001)). The quasi-Stokes vector streamfunction ¥ is
usually expressed in terms of an imposed lateral diffusivity and the slope of the
locally-referenced potential density surface (Gent et al., (1995)). More generally,
at least in a steady state when ét‘n is zero, the right-hand side of Eqn. (3.13.7) is
due only to mixing processes and once the form of the lateral and vertical
diffusivities are known, these terms are known in terms of the ocean’s
hydrography. Eqn. (3.13.9) is written more compactly as

vt =t where T = Vn@/‘vné

, (3.13.8)
and v' is interpreted as being due to mixing processes.

The mean horizontal velocity Vv is now split into the components along and
across the contours of © on the neutral tangent plane so that

v =ltxk +vit, (3.13.9)

where vl = v.1xk. Note that if 1T points northwards then Txk points
eastward. The expression V-t =v- of Eqn. (3.13.8) is now vertically
differentiated to obtain

VT, = =Vt vl = — D kxV, Pt o+, (3.13.10)

z

where we have used the “thermal wind” equation (3.12.3), Vv = %kaﬂP.
We will now show that the left-hand side of this equation is — ¢Zv” where ¢_is
the rate of rotation of the direction of the unit vector T with respect to height (in
radians per metre). By expressing the two-dimensional unit vector T in terms of
the angle ¢ (measured counter-clockwise) of T with respect to due north so that
T = (—sin¢, cosd)), we see that 1Txk = (cos¢, sin¢), 7. =-¢ Xk and
k-tx1_ = ¢ . Interestingly, ¢_is also equal to minus the helicity of T (and to
minus the helicity of Txk), thatis, ¢, = -1T-Vx1 = - (’txk)Vx(’txk), where
the helicity of a vector is defined to be the scalar product of the vector with its
curl. From the velocity decomposition (3.13.9) and the equation 1, = —¢_Txk
we see that the left-hand side of Eqn. (3.13.10), v-1_, is — ¢Zv” , hence V! can be
expressed as

| _ N KV Pxt v
Vs ————— - = or vV = ——o——7 — =
fep 0. 9. o.p/TO|V, 6 9.

1
z

[

|
N

., (3.13.11)
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where we have used the definition of neutral helicity H", Eqn. (3.13.2). The full
expression for both horizontal components of the mean horizontal velocity
vector V is then

_ N? k-V Px1 vL VC:) RC)
v = |2 XNIRT V. o (3.13.12)
fep 4. |

Neutral helicity arises in this context because it is proportional to the component
of the thermal wind vector Vv_ in the direction across the ® contour on the
neutral tangent plane (see Eqn. (3.13.4)).

This equation (3.13.12) for the Eulerian- mean horizontal velocity V shows
that in the absence of mixing processes (so that v = v =0) and so long as (i) the
epineutral © contours do spiral in the vertical and (ii) ‘V @‘ is not zero, then
neutral helicity A" (which is proportional to k-V, Px1t) is required to be non-
zero in the ocean whenever the ocean is not motionless.

Planetary potential vorticity

Planetary potential vorticity is the Coriolis parameter f times the vertical
gradient of a suitable variable. Potential density is sometimes used for that
variable but using potential density (i) involves an inaccurate separation
between lateral and diapycnal advection because potential density surfaces are
not a good approximation to neutral tangent planes and (ii) incurs the non-
conservative baroclinic production term of Eqn. (3.13.4). Using approximately
neutral surfaces, “ans”, (such as Neutral Density surfaces) provides an optimal
separation between the effects of lateral and diapycnal mixing in the potential
vorticity equation. In this case the potential vorticity variable is proportional to
the reciprocal of the thickness between a pair of closely spaced approximately
neutral surfaces.

The evolution equation for planetary potential vorticity is derived by first
taking the epineutral “divergence” V, - of the geostrophic relationship from
Eqn. (3.12.1), namely fv = gkxV z . The projected “divergences” of a two-
dimensional vector a in the neutral tangent plane and in an isobaric surface, are
V,,a =V .a+a_ .V zand V -a =V -.a+a_ -V z from which we find (using
Eqn (3126) v, z—V z=V P/P )

V,a =V .a+ta -V P/P. (3.20.1)
Applying this relationship to the two-dimensional vector fv =gkxV z we
have

V,(f) = gV, (kxV,z) + &, -V,P/P = 0. (3.20.2)
The first part of this expression can be seen to be zero by simply calculating its
components, and the second part is zero because the thermal wind vector v,

points in the direction kxV P (see Eqn. (3.12.3)). It can be shown that
Vv, ( fv) = 0 in any surface » which contains the line VPxVp .

Eqn. (3.20.2), namely Vn-( fv) = 0, can be interpreted as the divergence
form of the evolution equation of planetary potential vorticity since

v, (#) =V, vi_ o, (3.20.3)
n n ,}/Z

where ¢ = f7y_ is the planetary potential vorticity, being the Coriolis parameter
times the vertical gradient of Neutral Density. This instantaneous equation can
be averaged in a thickness-weighted sense in density coordinates yielding

V: 7.

(3.20.4)

~
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where the double-primed quantities are deviations of the instantaneous values
from the thickness-weighted mean quantities. Here the epineutral eddy flux of
planetary potential vorticity per unit area has been taken to be down the
epineutral gradient of § with the epineutral diffusivity K. The thickness-
weighted mean planetary potential vorticity is

v

and the averaging in the above equations is consistent with the difference
between the thickness-weighted mean velocity and the velocity averaged on the
Neutral Density surface, v -V (the bolus velocity), being v -V = Kann((}),
since Eqn. (3.20.4) can be written as V, ( f\Af) =V '(}7;1KVnc}) while the average
of Eqn. (3.20.3)is V,-(f¥) =0.

= f7., (3.20.5)

Y

The divergence form of the mean planetary potential vorticity evolution
equation, Eqn. (3.20.4), is quite different to that of a normal conservative variable
such as Absolute Salinity or Conservative Temperature,

[79 ] +V [@] + @ — Vn(,J;z—lKVné) + (D~®Z)z , ((:)_qu‘l)

"\ 7. Y. V.
because in Eqn. (3.20.4) the following three terms are missing; (i) the vertical
diffusion of ¢ with diffusivity D (ii) the dianeutral advection of ¢ by the
dianeutral velocity é, and (iii) the temporal tendency term.

The mean planetary potential vorticity equation (3.20.4) may be put into the
advective form by subtracting ¢ times the mean continuity equation,

[i J + V[;) A 0, (3.20.6)
7-, ). v.) 7.
from Eqn. (3.20.4), yielding
Qf,+vVa = 7.9, (7'kV,4) + ée. (3.20.7)
or
Mﬁ“%%%@=%=ﬁmﬁﬂ%ﬂ+wl. (3.20.8)

In this form, it is clear that potential vorticity behaves like a conservative
variable as far as epineutral mixing is concerned, but it is quite unlike a normal
conservative variable as far as vertical mixing is concerned; contrast Eqn. (3.20.8)
with the conservation equation for Conservative Temperature,

VV,6+60, = % = szn-(yz_lKVn(:))+(D(:)z)z . (A21.15)

A

]

t

If ¢ were a normal conservative variable the last term in Eqn. (3.20.8)
would be (Déz)z where D is the vertical diffusivity. The term that actually
appears in  Eqn. (3.20.8), (éé)z, is  different to (Déz)z by
(q”é—Dq"z)Z =f (é?Z—Dizz)z. Equation (A.22.4) for the mean dianeutral
velocity & can be expressed as & =~ D_ + Dy_/7. if the following three aspects
of the non-linear equation of state are ignored; (1) cabbeling and thermobaricity,
(2) the vertical variation of the thermal expansion coefficient and the saline
contraction coefficient, and (3) the vertical variation of the integrating factor
b(x,y,z) of Eqns. (3.20.10) - (3.20.15) below. Even when ignoring these three
different implications of the nonlinear equation of state, the evolution equations
(3.20.7) and (3.20.8) of ¢ are unlike normal conservation equations because of
the extra term

(éé - chZ)z - f(éyz N D?ZZ)Z = f(Dzyz)z - (Dzé)z (3.20.9)
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on their right-hand sides. This presence of this additional term can result in
“unmixing” of ¢ in the vertical. Consider a situation where both ¢ and O are
locally linear functions of § L down a vertical water column, so that the S A= 4d
and § A © diagrams are both locally straight lines, exhibiting no curvature.
Imposing a large amount of vertical mixing at one height (e. g. a delta function
of D) will not change the § A 6 diagram because of the zero § A © curvature
(see the water-mass transformation equation (A.23.1)). However, the additional
term (Dzé)z of Eqn. (3.20.9) means that there will be a change in ¢ of
(qu”)z =gD_+q. D, = gD_. Thisis ¢ times a negative anomaly at the central
height of the extra vertical diffusion, and is ¢ times a positive anomaly on the
flanking heights above and below the central height. In this way, a delta
function of extra vertical diffusion induces structure in the initially straight
S »— ¢ line which is a telltale sign of “unmixing”.

This planetary potential vorticity variable, ¢ = f7_, is often mapped on
Neutral Density surfaces to give insight into the mean circulation of the ocean on
density surfaces. The reasoning is that if the influence of dianeutral advection
(the last term in Eqn. (3.20.7)) is small, and the epineutral mixing of ¢ is also
small, then in a steady ocean V-V ¢ = 0 and the thickness-weighted mean flow
on density surfaces v will be along contours of thickness-weighted planetary
potential vorticity ¢ = (7.

Because the square of the buoyancy frequency, N?, accurately represents
the vertical static stability of a water column, there is a strong urge to regard
fN? as the appropriate planetary potential vorticity variable, and to map its
contours on Neutral Density surfaces. This urge must be resisted, as spatial
maps of fN? are significantly different to those of ¢ = f 7,- To see why this is
the case the relationship between the epineutral gradients of § and fN* will be
derived.

For the present purposes Neutral Helicity will be assumed sufficiently small
that the existence of neutral surfaces is a good approximation, and we seek the
integrating factor b= b(x, y,z) which allows the construction of Neutral Density
surfaces (y surfaces) according to

VY _ (ﬁ‘“’VSA - aGVG) = b (E - KVP] : (3.20.10)
4 p
Taking the curl of this equation gives
%X[K’VP—EJ = —VkxVP. (3.20.11)
p

The bracket on the left-hand side is normal to the neutral tangent plane and
points in the direction n = -V z +k and is g_lNz(—Vnz +k). Taking the
component of Eqn. (3.20.11) in the direction of the normal to the neutral tangent
plane, n, we find
0 =VkxVP-n = (Vi +«xn)x(V P+ Pn)n
= VxxV,Pon = VxV, Pk = (i, V,5, +K,V,0)xV Pk (320.12)
= T2V, PxV Ok = gN’H",
which simply says that the neutral helicity H" must be zero in order for the
dianeutral component of Eqn. (3.20.11) to hold, that is, V, PxV ©-k must be
zero. Here the equalities Ks, = ﬁg and kg = — (x}? have been used.
Since Vb can be writtenas Vb =V b + b n, Eqn. (3.20.11) becomes
g N2V, Inbx(-V,z +k) = - BV,kx(-V z +K), (3.20.13)
where VP =P, (—sz + k) has been used on the right-hand side, (—sz + k)
being the normal to the isobaric surface. Concentrating on the horizontal
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components of this equation, g 'N? V,Inb = - PV x, and using the
hydrostatic equation P =—gp gives

V,inb = pgN?V k= —pgN?(afV,0- BV, s, )| (3.20.14)

The integrating factor 5 defined by Eqn. (3.20.10), that is
bs(pl/y)Vy~Vpl/(Vpl~Vpl) where Vp'= pl(ﬁGVSA—aGVG)), allows spatial
integrals of b(ﬂG)VSA—(x@V@) =bhVIinp' =VIny to be approximately
independent of path for “vertical paths”, that is, for paths in surfaces whose
normal has zero vertical component.

By analogy with fN?, the Neutral Surface Potential Vorticity ( NSPV ) is
defined as —gy ™! times § = f 7,,so that NSPV =b fN * (having used the vertical
component of Eqn. (3.20.9)), so that the ratio of NSPV to fN? is found from Eqn.
(3.20.14) to be

NSPV p v, y

FYa b = P exp{_jmpgw 2(051(;)Vp® - ﬁgvaA).dl}

(3.20.15)
= exp{ Lmspg2 N_ZVPK~dl}.

The integral here is taken along an approximately neutral surface (such a
Neutral Density surface) from a location where NSPV is equal to fN?.

L 60°N
Fo40°
Neulral surface '227.‘75' L oge
NSPV/IN
- 09
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. 40°
I 6Q° S
| —— WV asand
' 1 e
100° W 80° 60" 40° 20° Q° 20°E

The deficiencies of fN? as a form of planetary potential vorticity have not
been widely appreciated. Even in a lake, the use of fN” as planetary potential

vorticity is inaccurate since the right-hand side of (3.20.14) is then
)

— _ o
-pg’N?apV, 0 = pg’N7ap® Vo P[P = —a—gVOP, (3.20.16)

where the geometrical relationship V © = -0, VoP/P. has been used along
with the hydrostatic equation. The mere fact that the Conservative Temperature
surfaces in the lake have a slope (i. e. Vg P # 0) means that the spatial variation
of contours of fN? will not be the same as for the contours of NSPV in a lake.
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In the situation where there is no gradient of Conservative Temperature
along a Neutral Density surface (V,0=0) the contours of NSPV along the
Neutral Density surface coincide with those of isopycnal-potential-vorticity
(IPV'), the potential vorticity defined with respect to the vertical gradient of
potential density by IPV =—fgp~'p°. IPV is related to fN? by (McDougall
(1988))

PV _—gp”p® _ AR/ AOp) 11
> = 5 =— = -6 =~ =g, (32017)
N N B°(p) [R,-1]  B°(p) G
so that the ratio of NSPV to [PV plotted on an approximately neutral surface is
given by

NPy _ B°(p) [R,-1]

PV B°(p,) [Rp/r—l
The sketch below indicates why NSPV is different to [PV ; it is because of the
highly differentiated nature of potential vorticity that isolines of I/PV and NSPV
do not coincide even at the reference pressure p, of the potential density
variable. NSPV, fN? and IPV have the units s™°.

] exp{[,. &> N7V (px)-dl}. (3.20.18)
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Fig. 14. A vertical cross section through three neutral surfaces and
three potential density surfaces. The reference pressure of the potential
density is the pressure of the central point, a. The neutral surface and
potential density surface that pass though this point are parallel. The
slopes of the other pairs of surfaces are different.



