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Double-diffusive convection; “salt-fingers”
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Figure 4.17.  Salt fingers. These are formed in the laboratory by carefully allowing 2
warm weak brine solution containing a fluorescent dye to spread over a cold fresh
layer of water. A vertical sheet of light is used to cause the dye to emit light and so
make the developing fingers visible in this horizontal view. The *fingers™ are typically
2 mm in width in the laboratory experiment, but in the ocean fingers may be some few
centimetres wide. (From Huppert and Turner, 1981.)

The “budget method” of estimating the vertical diffusivity D
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Figure 4.22.  Heat balance in a deep-ocean basin. Flow enters o deep-occan hasin
over a sill on the left. The basin is closed on the right. There is a downward flux of heat
by diffusion from water of higher temperature above the 7 isotherm and upwurd
(L-lll\\‘t‘]lill:_‘l motion at speed. w. within the basin at the level of the 7 isotherm,

maintaining a steady state.

This “budget method” is a way of estimating the vertical diffusivity across the
isotherm without measuring the properties of the turbulence at the centimeter
scale.
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The water-mass transformation equation

It is instructive to substitute Eqn. (A.22.4) for ¢ into the expression (A.21.15) for
the material derivative of ©, thus eliminating & and obtaining the following
equation for the temporal and spatial evolution of © along the neutral tangent
plane (McDougall (1984))

O +v:V,6 = 1.V, (y'KV,6)+ KeN?6_(COV,6-V,6 + TV, 6.V, P
L d2S (A.23.1)

+ DB%gN @} — 2.
Pre 7 de?

The term involving D has been written as proportional to the curvature of
the § A —© diagram of a vertical cast; this term can also be written as
Df3%gN ™ (@ZS'AZZ—S’AZ(:)ZZ). The form of Eqn. (A.23.1) illustrates that when
analyzed in density coordinates, Conservative Temperature (and Absolute
Salinity) (i) are affected not only by the expected lateral diffusion process along
density surfaces but also by the nonlinear dianeutral advection processes,
cabbeling and thermobaricity, (ii) are affected by diapycnal turbulent mixing
only to the extent that the vertical § N~ © diagram is not locally straight, and (iii)
are not influenced by the vertical variation of D since D, does not appear in
this equation.
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Figure 13.11 7T-S plots of water in the various ocean basins. After Tolmazin (1985: 138).
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A review of our basic conservation equations

S| .o & .08, o aS,

7 + V'VnSA‘l‘eg = yZVn-(j/z KV;1SA)+ Dg . !A2111’

6 +v.vé+ é%—@) = 7.V, (r2'kv,0)+(D6.) . (A.21.15)
n z z

eg'N? = -K(CPV,6-V,0 + TV, 6.V P) +a°(DO, ) -p° (DSAZ) | (a22.9)

V4

O +¥:V,6 = 1.V, (y'KV,6)+ KeN?6_(CPV,6-V,6 + TV, 6.V, P)

L d2S (A.23.1)

+ DB%gN @} — 2.
Pe 7 de?

Equations (A.21.11) and (A.21.15) are the fundamental evolution equations
of Absolute Salinity and Conservative Temperature in a turbulent ocean, and the
pair of equations (A.22.4) and (A.23.1) are simply derived as linear combinations
of Eqns. (A.21.11) and (A.21.15). The “density” conservation equation (A.22.4)
and the “water-mass transformation” equation (A.23.1) are in some sense the
“normal modes” of Eqns. (A.21.11) and (A.21.15). That is, Eqn. (A.22.4)
expresses how mixing processes contribute to the mean vertical velocity e
through the neutral tangent plane, while (A.23.1) expresses how the tracer called
“Conservative Temperature measured along the neutral direction” is affected by
mixing processes; this equation does not contain ¢ .
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For completeness, the water-mass conservation equation for Absolute
Salinity that corresponds to Eqn. (A.23.1) is
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N - A -1 A 24 oy A A oy A
AL VY8, = vV, (v'kV,8,)+KeN 78, (COV, 69,6 + TV, 6.V, P)
" A (A.23.2)
~yd’S
+ Da®gN 0] —2

ae*’

and it easy to show that ¢° times the right-hand side of Eqn. (A.23.1) is equal to
B times the right-hand side of Eqn. (A.23.2).

Potential density p® or p°

Potential density p? is the density that a fluid parcel would have if its pressure
were changed to a fixed reference pressure p, in an isentropic and isohaline
manner. Potential density referred to reference pressure p, can be written as

pe(SA’t’p’pr) = p(SAae[SA:tap:pr];pr) = g];l (SA’H[SA’t5pﬂpr]5pr)~ (342)

Using the functional forms of either p =;3(SA,9,p) or pzﬁ(SA,G,p),
potential density with respect to reference pressure p, (e. g. 1000 dbar) can be
evaluated more easily as

PG(SA,t,p,pr) - f)(SA’n’ pr) - 'E)(SA’G’ pr) - /S(SA’& pr)’ (3.4.3)

where we note that the potential temperature € in the penultimate expression is
the potential temperature with respect to 0 dbar. Once the reference pressure is
fixed, potential density is a function only of Absolute Salinity and Conservative
Temperature (or equivalently, of Absolute Salinity and potential temperature).
Note that it is equally correct to label potential density as p? or p© (or indeed
as p") because 77, @ and © are constant during the isentropic and isohaline
pressure change from p to p,; that is, these variables posses the “potential”
property.

Since we know that v=g,= sz = };P, potential density may also be
expressed in terms of the pressure derivative of the expressions h = E(S 00, p)
and h = i;(SA,G,p) as

PO (Sytpop,) = [In(5,.0.p= )] = [Ap(S0.0.p=5)] . (3.4.4)

The figure below shows contours of constant potential density on the
S, — © diagram. The red contours have p =0 dbar while the blue contours are
with respect to the reference pressure p =1100 dbar. Notice particularly that on
this §, — © diagram the contours rotate with increasing reference pressure.

N o

"Isopycnals at p=0 dbar

124" Isopycnals at p=1100 dbar

Conservative Temperature, © (°C)




79

An important consequence of this rotation can be deduced by considering
the two seawater parcels A and B. If parcels A and B were at the sea surface
(that is, at 0 dbar) then parcel B would be denser than parcel A. However, if
both seawater parcels were at 1100 dbar then the reverse is the case; now parcel
A is denser than parcel B. Therein lies a whole level of complication in physical
oceanography, all caused by the thermobaric non-linearity of the equation of
state of seawater.

The symbol o, is used for [)@(S > ©, p.=1000 dbar) —-1000 kg m™ and
similarly for 0,0, and o,, and these are called “potential density anomaly”.

Here is another figure illustrating the rotation of the potential density
contours with pressure.
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Figure 2.1. Equation of state for sea water. Contours of the density difference
p(p.0,.5)— p(p,2°C, 34, 5 psu) are shown in the (A, S)-plane for different values
of pressure corresponding to depths of O m (thin lines) to 5 km (thick lines) in 1km
intervals. The contour interval is 0.25 kg m™". The equation of state is nonlinear.
The contours (isopycnals) are curved and their slope firns with pressure. Courtesy
of Ernst Maier-Reimer.
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Calculating the thermodynamic properties of seawater using the GSW
Oceanographic Toolbox

The computer software needed to evaluate the thermodynamic properties of
seawater is available from the web site www.TEOS-10.org The GSW
Oceanographic Toolbox (GSW stands for Gibbs SeaWater) can be downloaded in
a variety of computer languages. The above plot came from this GSW package.
The list http://www.teos-10.org/pubs/GSW Toolbox list.pdf lists all the available
algorithms.

For the past thirty years we have taken the “raw” data of Practical Salinity
Sp (PSS-78), in situ temperature ¢ (now ITS-90) and pressure p and we have
used an algorithm to calculate potential temperature € in order to analyze and
publish water-mass characteristics on the §, -6 diagram. On this S, -6
diagram we have been able to draw curved contours of potential density using
EOS-80 which has been the international standard for seawater from 1980-2009.

Under TEOS-10 this practice has now changed:- density and potential
density (and all types of geostrophic streamfunction including dynamic height
anomaly) are now not functions of Practical Salinity S, but rather are functions
of Absolute Salinity S, .

In summary, under EOS-80 we have used the observed variables (S,, ¢, p)
to first form potential temperature & and then we have analyzed water masses
on the §, -6 diagram, and we have been able to draw curved contours of
potential density on this same S, —@ diagram. Under TEOS-10, the observed
variables (S, 7, p), together with longitude and latitude, are used to first form
Absolute Salinity §, using gsw_SA_from_SP, and then Conservative
Temperature © is calculated using gsw_CT_from_t. Oceanographic water
masses are then analyzed on the S, —©® diagram (using gsw_SA_CT_plot), and
potential density contours can be drawn on this S, —-© diagram using
gsw_rho(SA,CT,p_ref).

So the first steps with analyzing observed oceanographic data is to calculate
and store Absolute Salinity S, and Conservative Temperature ©. Thereafter,
all the analysis uses these variables and does not make any further use of the
observed Practical Salinity S,, nor of the in situ temperature ¢, nor of the
potential temperature 6.

Equilibria, l l l l
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Formulas for properties of seawater and ice expressed in terms of the
Gibbs functions g(Sa, 7, p) for seawater and g(7, p) for ice.

Prol;erty Symbol Expression in Expressimf in
2(S, T, p) of seawater 2(T, p) of ice
specific Gibbs energy g g g
specific enthalpy h g—Tgr g—Tgr
specific Helmholtz energy f g P& g~ P8
specific internal energy u g—Tgr —pg g—Tgr —pg
Specific entropy s —gr —&r
pressure Y4 p p
density P 1/g, 1/g,
specific isobaric heat capacity < —Tgrr T grr
thermal expansion a g/ g g/ g
isothermal compressibility KT —Zp ! & —Zp ! &
isentropic compressibility K (g; -£.2,, )/ (gp gﬂ) (g; — 2.8, )/ (gp g”)
Sound speed w g, \/ g,/ (g; -g, gpp) -
chemical potential of water Hw g—SAgs g
pressure coefficient for ice p - —81/ &

Freezing temperature and isobaric melting enthalpy

As an example of the use of more than one of the above thermodynamic
potentials, consider the process of the melting (or freezing) of ice into seawater.

Thermodynamic theory tells us that freezing occurs at the temperature ¢ at
which the chemical potential of water in seawater u" equals the chemical
potential of ice u™. Thus, ¢ is found by solving the implicit equation

pY (Systrap) = 1" (1) (3.33.1)
or equivalently, in terms of the two Gibbs functions,
&(Spst1:0) = S, 8 (Sus1r2) = " (41). (3.33.2)

The Gibbs function for ice Th, g™ (¢ p), is defined as part of TEOS-10, so we
have very accurate freezing temperatures which are functions of Absolute
Salinity and pressure.
Knowledge of the Gibbs functions of seawater and of ice also lead to very
accurate values for the latent heat of melting (isobaric melting enthalpy), namely
S| oh Ih Ih
L(S,.p) = h=Syz| —h" = h=S,(u—Tu,) - ™, (3.34.6)

Alrp

which is actually the difference between the partial specific enthalpies of water
in seawater and of ice.
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The vertical gradient of potential density
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Figure 6.10 Vertical sections of density in the western Atlantic. Note that the depth scale
changes at 1000 m depth. Upper: og, showing an apparent density inversion below 3,000 m.
Lower: o4 showing continuous increase in density with depth. After Lynn and Reid (1968).

The potential density of a seawater sample (S 10, p), referenced to reference
pressure p_is given by p@(S e @) = /3(5 A pr). The vertical gradient of the
natural logarithm of potential density is 3° (p,) times the vertical gradient of
Absolute Salinity minus o® (p,) times the vertical gradient of Conservative
Temperature,

(S]
L9 ), - alpe. (r262

The ratio of this vertical gradient of potential density to the square of the
buoyancy frequency is given by (Tutorial exercise)

-gp”p? _ B(p.) [R/r=1] )1 1
2 B B B e’
N Bo(r) [R,-1]  B°(p)G° G
where r is the ratio of the slope on the §, —©® diagram of an isoline of potential
density with reference pressure p, to the slope of a potential density surface
with reference pressure p, and is defined by

® (S4,9,p)/B°(S5A:0.P)

(3.20.5)

r= , (3.17.2)
a@ (SA’G’pr)/ﬂO (SA’G’pr)
and the “isopycnal temperature gradient ratio” G° is defined by
R,—1 ©
G® = [R1] where R = gigz (3.17.4)
(B, /r-1] BO(S4).

is the ratio of the vertical contribution from Conservative Temperature to that
from Absolute Salinity to the static stability N? of the water column. The name
“isopycnal temperature gradient ratio” is chosen for G° because it can be
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shown that G® is the ratio of the gradient of Conservative Temperature in a
potential density surface to that in a neutral tangent plane (Tutorial exercise),

V,0 =GV 0. (3.17.3)

The saline contraction coefficient ﬁG(S 0, p) does not vary very much
from a constant value compared with variation of the thermal expansion
coefficient Oc@(S A p) . That is, you make a 10% - 20% error by approximating
r as

)
o |S,,0,
ro= M . (3.17.2_approx)

a®(5,.0.p,)
There is never any reason to actually make this approximation in numerical
work, rather this approximation can aid in thinking about what causes what in
the ocean. [You can check that this is a good approximation by inspection of the
red and blue potential density contours on the above §, —© diagram.]

Also, the slope difference between that of a neutral tangent plane and a
potential density surface is given by (Tutorial exercise)
Voe-vV e V.0

Vz-V 2z = "1—%— = 1-G®)—=—
o 0. ©]

R[i-r]ve  &[-r]v,e

(3.18.1)

[R,-r] ©.  r-1] ©.°

FiG. 1. Sketch of a cross section through the ocean showing a
neutral surface and a potential density surface passing through point
a, At a horizontal distance éx from point a, a vertical cast cuts the
two surfaces at points b and c.
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FIG. 7. Maps of pressure on two potential density surfaces: (a) ay = 27.73; (b) a5 = 27.83. The potential
density surfaces intersect the same neutral surface (NSa of Fig. 6) at different positions. This is illustrated
in cross section in (c), which goes from near Nova Scotia on the left to near the Straits of Gibraltar on the
right. Also shown (dashed lines) are a potential density surface referenced to a pressure of 1000 db (o,
= 32.34) and a potential density surface referenced to 2000 db (a» = 36.84).
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FIG. 2. Sketch of a neutral surface and three different potential
density surfaces, referenced to 0 db, 1000 db and 2000 db. The neutral
surface is tangential to potential density surfaces only at the reference
pressure of those potential density surfaces. In this way, the neutral
surface can be regarded as the envelope curve of many locally ref-
erenced potential density surfaces with continually changing reference
pressures. The definition of a neutral surface adopted in this paper
avoids the concept of potential density and in particular, avoids the
changing reference pressure which is endemic to a neutral surface
defined in terms of potential density concepts.
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