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Reference states  
The Gibbs function 

  
g SA,t, p( )  contains four arbitrary constants that cannot be 

determined by any set of thermodynamic measurements.  These arbitrary 
constants mean that the Gibbs function is unknown and unknowable up to the 
arbitrary function of temperature and Absolute Salinity (where 0T  is the Celsius 
zero point, 273.15 K )  

  
a1 + a2 T0 + t( ) + a3SA + a4 T0 + t( )SA  . (2.6.2) 

This is equivalent to saying that both enthalpy  h  and entropy η  are unknown 
and unknowable up to linear functions of Absolute Salinity; enthalpy is 
unknown up to   a1 + a3 SA  and entropy is unknown up to   −a2 − a4 SA .   

 There are no known or conceivable experiments that could possibly 
constrain these four arbitrary numbers.  By the same token, there can be no 
conceivable consequences to any arbitrary choice that is made for these four 
numbers.   
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Now we can play  
So we’ve spent ~20 pages of lecture notes deriving the Fundamental 
Thermodynamic Relation and the First Law of Thermodynamics.  Now it’s time 
to play.  Here is a revision of our underlying equations.   
 

 The Continuity Equation is  

   
ρt + ∇⋅ ρu( ) = 0  . (A.21.2) 

 The Fundamental Thermodynamic Relation is  

  
du + p+ P0( )dv = dh − vdP = T0 + t( )dη + µdSA  . (A.7.1) 

 The First Law of Thermodynamics is  

   

ρ dh
dt

− v dP
dt

⎛
⎝⎜

⎞
⎠⎟

= ρ du
dt

+ p+ P0( )dv
dt

⎛
⎝⎜

⎞
⎠⎟

= ρ T0 + t( )dη
dt

+ µ
dSA

dt
⎛
⎝⎜

⎞
⎠⎟

= −∇⋅FR − ∇⋅FQ + ρε

 .  (B.19) 

 The conservation equation of Absolute Salinity is  

   
ρSA( )t + ∇⋅ ρuSA( ) = ρ

dSA

dt
= −∇⋅FS  , approximate (A.21.8a) 

 The definition of the Gibbs function  

  
g SA,T , P( ) = g ≡ h − Tη ≡ u + Pv − Tη  .   (definition_of_g) 

 
We will concentrate on the parts of these equations that involve enthalpy  h  
(rather than internal energy  u ), that is, we will concentrate on the red parts of 
the equations.   

 The above equations have several variables appearing in more than one 
equation (especially when you realize that   ρ = v−1 ), but the Gibbs function  
appears in just the last equation, so why bother with it?  The answer is that it is 
the Gibbs function that defines the fluid.  That is, we have an internationally 
defined and accepted algorithm for 

  
g SA,t, p( ) , and all the other thermodynamic 

variables are actually not separate quantities but are actually various derivatives 
of the Gibbs function.   
 
 
Enthalpy is “isobaric conservative”  
There is an important consequence of the First Law that is really easy to derive, 
and its too beautiful to delay discussing, so we will do so right away.  The First 
Law of Thermodynamics can be put in divergence form by invoking the 
continuity equation, giving  

   
ρh( )t + ∇⋅ ρuh( ) − dP

dt
= −∇⋅FR − ∇⋅FQ + ρε . (A.13.2) 

An important consequence of Eqn. (A.13.2) is that when two finite sized parcels 
of seawater are mixed at constant pressure and under ideal conditions, the total 
amount of enthalpy is conserved.  To see this, integrate over the volume that 
encompasses both fluid parcels while assuming there to be no radiative, 
boundary or molecular fluxes across the boundary of this control volume.  This 
control volume may change with time as the fluid moves (at constant pressure), 
mixes and contracts.  The dissipation of kinetic energy by viscous friction ρε  is 
commonly ignored during such mixing processes but in fact the dissipation term 
does cause a small increase in the enthalpy of the mixture with respect to that of 
the two original parcels, and is easy to include if needs be.  Apart from this non-
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conservative source term, ρε , under these assumptions Eqn. (A.13.2) reduces to 
the statement that the volume integrated amount of hρ  is the same for the two 
initial fluid parcels as for the final mixed parcel, that is, the total amount of 
enthalpy is unchanged.   

 This result of non-equilibrium thermodynamics (it is non-equilibrium 
because of the finite size of the parcels and the finite property differences) has 
been known since the days of Gibbs in the nineteenth century, and it is of the 
utmost importance in oceanography.  The fact that enthalpy is conserved when 
fluid parcels mix at constant pressure is the central result upon which all of our 
understanding of “heat fluxes” and of “heat content” in the ocean rests.  As 
important as this result is, it does not follow that enthalpy is the best variable to 
represent “heat content” in the ocean.  Enthalpy is a very poor representation of 
“heat content” in the ocean because it does not posses the “potential” property.  
It will be seen that potential enthalpy 0h  (referenced to zero sea pressure) is the 
best thermodynamic variable to represent “heat content” in the ocean.   
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Review of Therm0_Lecture02_23April2013  
The left-hand side of the First Law of Thermodynamics is identical to one of the 
three parts of the Fundamental Thermodynamic Relation,  

  
ρ dh

dt
− v dP

dt
⎛
⎝⎜

⎞
⎠⎟

= ρ du
dt

+ p+ P0( )dv
dt

⎛
⎝⎜

⎞
⎠⎟

= ρ T0 + t( )dη
dt

+ µ
dSA

dt
⎛
⎝⎜

⎞
⎠⎟

 , (B.6) 

but the right-hand side of the First Law of Thermodynamics contains the 
physical processes that affect the “heat-like” variables   u, h  and η  that appear on 
the left-hand side.  These physical processes are minus the divergences of the 
fluxes of heat by radiation and by molecular diffusion plus the dissipation of 
kinetic energy into “heat”.   

 We learnt that the way to derive the First Law of Thermodynamics is a bit 
torturous.  One must first develop the conservation equation for Total Energy 

1
2u= + ⋅ + Φu uE  and then one subtracts off the evolution equation for 

  
1
2 u ⋅u + Φ .  What is left is the First Law of Thermodynamics.  This is the only 

way of deriving the First Law of Thermodynamics even for a pure substance 
(like freshwater) and it is especially obvious that this is the only viable route 
when the fluid is not a pure substance (e.g. seawater which is pure water plus 
sea-salt in solution).   

 We then looked at the form of the molecular fluxes of salt and heat 

   

FS

FQ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
A B
B C
⎡

⎣
⎢

⎤

⎦
⎥
∇ −µ T( )
∇ 1 T( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 , (B.21, B.22)) 

and examined the constraints on   A, B  and  C  required to ensure that entropy is 
never destroyed.   

 We then looked at the First Law of Thermodynamics, namely  

   

ρ dh
dt

− v dP
dt

⎛
⎝⎜

⎞
⎠⎟

= ρ du
dt

+ p+ P0( )dv
dt

⎛
⎝⎜

⎞
⎠⎟

= ρ T0 + t( )dη
dt

+ µ
dSA

dt
⎛
⎝⎜

⎞
⎠⎟

= −∇⋅FR − ∇⋅FQ + ρε

 .      (B.19) 

and were able to show that when turbulent mixing occurs between two fluid 
parcels, enthalpy is conserved (apart from the heating caused by any dissipation 
of kinetic energy ρε ).  This is true because for fluid parcels to mix they have to 
be at the same physical location and therefore at the same pressure.  This 
“isobaric conservative” nature of enthalpy is the most important consequence of 
the First Law of Thermodynamics for a turbulent fluid such as the atmosphere 
and ocean.  However enthalpy has another drawback that makes it an 
undesirable variable; it varies with pressure, even for an adiabatic and isohaline 
change in pressure.  We will find that a new variable that is based on enthalpy, 
namely potential enthalpy, is a much better variable for representing the “heat 
content” per unit mass of seawater.   
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“adiabatic”, “isohaline” and “isentropic”; reversible and irreversible 
processes  

The adjective “isohaline” means “at constant salinity” and describes a process in 
which the Absolute Salinity of a fluid parcel is constant because   − ∇⋅FS  is zero.  
The adjective “adiabatic” is traditionally taken to mean a process during which 
there is no exchange of heat between the environment and the fluid parcel one is 
considering.  However, with this definition of “adiabatic” it is still possible for 
the entropy η , of a fluid parcel to change during an isohaline and adiabatic 
process (see Eqn. (B.19)).  This is because the dissipation of mechanical energy ε  
causes an increase in η .   

   

ρ dh
dt

− v dP
dt

⎛
⎝⎜

⎞
⎠⎟

= ρ du
dt

+ p+ P0( )dv
dt

⎛
⎝⎜

⎞
⎠⎟

= ρ T0 + t( )dη
dt

+ µ
dSA

dt
⎛
⎝⎜

⎞
⎠⎟

= −∇⋅FR − ∇⋅FQ + ρε

 .      (B.19) 

While the dissipation of mechanical energy is a small term whose influence is 
routinely neglected in the First Law of Thermodynamics in oceanography, it 
seems advisable to modify the meaning of the word “adiabatic” in 
oceanography so that our use of the word more accurately reflects the properties 
we normally associate with an adiabatic process.  Accordingly the word 
“adiabatic” in oceanography is taken to describe a process occurring without 
exchange of heat and also without the internal dissipation of mechanical energy.  
With this definition of “adiabatic”, a process that is both isohaline and adiabatic 
does imply that the entropy η  is constant, that is, it is an “isentropic” process.  

 With this definition of “adiabatic”, an “adiabatic and isohaline” process, 
is identical to an “isentropic and isohaline” process.  Often such a process is 
simply described as being simply “isentropic” as one could have an isentropic 
process in which there are changes in both temperature and in Absolute Salinity 
in just the right proportion to achieve no change in entropy.  Hence one needs to 
say “adiabatic and isohaline” or “isentropic and isohaline”; two constancies are 
required, not one.   

 A reversible thermodynamic process must entail no change in entropy or 
salinity during the process, and no dissipation of mechanical energy.  That is, a 
reversible thermodynamic process must have   F

S = FR = FQ = ε = 0 .  A slow 
change in the pressure of a fluid parcel may occur during a reversible process 
while   F

S = FR = FQ = ε = 0 .  If any of   FS ,   FR ,   FQ  or ε  are non-zero, the 
processes is irreversible.  The most common reversible processes is an adiabatic 
and isohaline change of pressure such as occurs during the vertical heaving 
motion of an internal gravity wave.  During such motion both the entropy and 
the Absolute Salinity of the parcel are constant.   
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potential temperature of seawater  
 
Potential temperature θ  is the temperature that a fluid parcel would have if its 
pressure were changed to a fixed reference pressure rp  in an isentropic and 
isohaline (and reversible) manner.  For a fluid parcel 

  
SA,t, p( )  at pressure  p  the 

following thought experiment is conducted.  You wrap the fluid parcel in an 
insulating plastic bag and then you slowly move it to a different location where 
the pressure is   pr .  The parcel experiences the changing pressure during this 
movement.  When the parcel arrives at   pr  you put a thermometer into the parcel 
and measure its in situ temperature at   pr .  This temperature is called the parcel’s 
potential temperature.   

Potential temperature referred to reference pressure rp  is often written as 
the pressure integral of the adiabatic lapse rate (Fofonoff (1962), (1985))  

( ) [ ]( )r

A r A A, , , , , , , , .
P

P
S t p p t S S t p p p dPθ θ θ ′ ′ ′= = + Γ∫  (3.1.1) 

where 
  
Γ = ∂t ∂P

SA ,η
 is the rate at which in situ temperature changes with 

pressure at fixed entropy and salinity.   

The algorithm that is used with the TEOS-10 Gibbs function approach to 
seawater equates the specific entropies of two seawater parcels, one before and 
the other after the isentropic and isohaline pressure change.  In this way, θ  is 
evaluated using a Newton-Raphson type iterative solution technique to solve 
the following equation for θ   

  
η SA,θ , pr( ) = η SA,t, p( ),  (3.1.2) 

or, in terms of the Gibbs function, ,g   

( ) ( )A r A, , , , .T Tg S p g S t pθ− = −  (3.1.3) 

This relation is formally equivalent to Eqn. (3.1.1).   

 In equating the specific entropies of the seawater parcel at the two different 
pressures in Eqn. (3.1.2) we are exploiting the fact that in the thought experiment 
the slow change in pressure is done isentropically.   

 Consider now two seawater parcels with the same Absolute Salinities but at 
different in situ temperatures and different pressures.  If these two seawater 
parcels have the same value of specific entropy then the two seawater parcels 
must also have the same value of potential temperature θ  at   pr  (see Eqn. (3.1.2) 
where the right-hand side is the same for the two parcels).   
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potential temperature of a perfect gas  

An ideal gas obeys   

 Pv = RT  (Perfect_Gas_A) 
where  R  is the universal gas constant   R = 287 J kg−1 K−1 .  For an adiabatic 
change in pressure (this also being an isentropic processes) the Fundamental 
Thermodynamic Relation tells us that   dh = vdP .  For an ideal gas, specific 
enthalpy is equal to  

cpT  where 
  
cp = 7

2 R  for a diatomic gas.  Hence for a perfect 
gas we have  

  
cpdT = RT

P
dP         or       

  
d(lnT ) = 2

7 d( ln P) . (Perfect_Gas_B) 

Performing the adiabatic change in pressure from  P  to   P0  gives  

  
d(lnT ′)

P

P0

∫ = 2
7 d( ln P ′)

P

P0

∫          or       
  

T0 +θ
T0 + t

=
P0

P
⎛
⎝⎜

⎞
⎠⎟

2
7

  (Perfect_Gas_C) 

 
 Now consider a more general situation where the parcel of perfect gas does 
exchange heat with its surroundings, then the Fundamental Thermodynamic 
Relation shows that  

  

dη = cp
dT

T0 + t
− R dP

P
= cpd(ln T0 + t⎡⎣ ⎤⎦) − 2

7 cpd( ln P)

= cpd(ln T0 +θ⎡⎣ ⎤⎦).
 (Perfect_Gas_D) 

Hence for a perfect gas, specific entropy is simply proportional to the natural 
logarithm of potential temperature (absolute potential temperature),   

  
η = cp ln T0 +θ⎡⎣ ⎤⎦ + constant . (Perfect_Gas_E) 
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potential enthalpy  
 
Potential enthalpy 0h  is the enthalpy that a fluid parcel would have if its 
pressure were changed to a fixed reference pressure rp  in an isentropic and 
isohaline manner.  Because heat fluxes into and out of the ocean occur mostly 
near the sea surface, the reference pressure for potential enthalpy is almost 
always taken to be rp  = 0 dbar (that is, at zero sea pressure).  The thought 
process involved with potential enthalpy is the same as for potential 
temperature, namely the parcel is enclosed in an insulating plastic bag and its 
pressure is slowly change to   pr .  At this new pressure the parcel’s enthalpy is 
calculated, and this is called potential enthalpy.   

 Now considering specific enthalpy to be a function of entropy (rather than 
of temperature t ), that is, taking 

   
h =

h SA,η, p( ),  the Fundamental 

Thermodynamic Relation (FTR, Eqn. (A.7.1)) becomes  

   

hη dη +


hSA

dSA = T0 + t( )dη + µdSA   while  
   
∂

h ∂P

SA ,η
= v ,  (A.11.4) 

Also, from the previous section we know that if   SA  and η  are constant, then so 
is potential temperature θ . Hence we also know that (recall that  gP = v ) 

  
∂h ∂P

SA ,θ
= v . (A.11.6) 

 Potential enthalpy 0h  can the be expressed as the pressure integral of 
specific volume as  

   

h0 SA,t, p( ) = h SA,θ ,0( ) = h0 SA,θ( ) = h SA,t, p( ) − v SA,θ SA,t, p, ′p( ), ′p( )
P0

P

∫ d ′P

= h SA,t, p( ) − v SA,η, ′p( )
P0

P

∫ d ′P

= h SA,t, p( ) − v SA,θ , ′p( )
P0

P

∫ d ′P

= h SA,t, p( ) − v̂ SA,Θ, ′p( )
P0

P

∫ d ′P ,

(3.2.1) 

and we emphasize that the pressure integrals here must be done with respect to 
pressure expressed in Pa  rather than dbar.   In this equation we have introduced 
the over-tilde, over-hat etc. which we will use to indicate the functional 
dependence of a variable; see the list of Nomenclature that has been distributed.  
Note that in the first line of the above equation, specific volume  v  is a function 
of 

  
SA,t, p( )  while 

  
θ SA,t, p, ′p( )  (see Eqn. (3.1.1)) is the potential temperature of 

parcel 
  

SA,t, p( )  with respect to the reference pressure  ′p .   

 In terms of the Gibbs function, potential enthalpy 0h  is evaluated as  

( ) ( ) ( ) ( ) ( )0
A A A 0 A, , , , 0 , , 0 , , 0 .Th S t p h S g S T g Sθ θ θ θ= = − +  (3.2.2) 
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Conservative Temperature  
 
Conservative Temperature Θ  is defined to be proportional to potential enthalpy,  

   
Θ SA,t, p( ) = Θ SA,θ( ) = h0 SA,t, p( ) cp

0 = h0 SA,θ( ) cp
0  (3.3.1) 

where the value that is chosen for 0
pc  is motivated in terms of potential enthalpy 

evaluated at an Absolute Salinity of 1
SO PS35 35.165 04 gkgS u −= =  and at 

25 Cθ = °  by  

( ) ( )SO SO 1 1, 25 C, 0 , 0 C, 0
3991.867 957 119 63 J kg K ,

(25 K)
h S h S − −⎡ ⎤° − °⎣ ⎦ ≈  (3.3.2) 

noting that ( )SO, 0 C, 0dbarh S °  is zero according to the way the Gibbs function is 
defined.  We adopt the exact definition for 0

pc  to be the 15-digit value in (3.3.2), 
so that  

0 1 13991.867 957 119 63 Jkg K .pc
− −≡  (3.3.3) 

The value of 0
pc  in Eqn. (3.3.3) is very close to the average value of the 

specific heat capacity pc  at the sea surface of today’s global ocean.  This value of 
0
pc  also causes the average value of θ −Θ  at the sea surface to be very close to 

zero.  Since 0
pc  is simply a constant of proportionality between potential 

enthalpy and Conservative Temperature, it is actually totally arbitrary and there 
was no need to choose a value with so many significant figures.   
 
 
 
The “conservative” and “isobaric conservative” properties  
 
A thermodynamic variable C  is said to be “conservative” if its evolution 
equation (that is, its prognostic equation) has the form  

( ) ( ) Cd .
dt
CC C
t

ρ ρ ρ+ ∇⋅ = = −∇⋅u F  (A.8.1) 

where the flux CF  is a diffusive flux of property C.  For such a “conservative” 
property, C, in the absence of fluxes CF  at the boundary of a control volume, the 
total amount of C-substance is constant inside the control volume.  In the special 
case when the material derivative of a property is zero (that is, the middle part 
of Eqn. (A.8.1) is zero) the property is said to be “materially conserved”.   

 Conservative Temperature Θ  (or equivalently, potential enthalpy 0h ) is not 
completely conservative, but we will find that the error in assuming it to be 
conservative is negligible.  Because we are ignoring the non-conservative source 
term of Absolute Salinity in this course, we may also take Absolute Salinity to be 
conservative (as we have done in going from Eqn. (B.20) to Eqn. (B.20a) above).   

 Other variables such as potential temperature ,θ  enthalpy ,h  internal 
energy ,u  entropy ,η  density ,ρ  potential density ,θρ  specific volume  v , the 
total energy 0.5u= + ⋅ + Φu uE  (see Eqn. (B.15)), and the Bernoulli function 

0.5h= + ⋅ +Φu uB  (see Eqn. (B.17)) are not conservative variables.   

 A different form of “conservation” attribute, namely “isobaric 
conservation” occurs when the total amount of the quantity is conserved when 
two fluid parcels are mixed at constant pressure without external input of heat 
or matter.  This “isobaric conservative” property is a very valuable attribute for 
an oceanographic variable.  Any “conservative” variable is also “isobaric 
conservative”, thus the conservative variables listed above, namely mass and 
Preformed Salinity *S  are exactly “isobaric conservative” variables, while 
Conservative Temperature Θ  and Absolute Salinity   SA  are almost (but not 
exactly) “isobaric conservative”.   
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 In addition, the Bernoulli function B  and specific enthalpy h  are also 
almost exactly “isobaric conservative”.  The issue with the Bernoulli function in 
this regard is the presence of the unsteady term  Pt , while the issue with 
enthalpy not being totally 100% “isobaric conservative” is the presence of the 
dissipation of mechanical energy term ρε .  We will find that this is also the 
largest of several terms that cause Conservative Temperature to not be 100% 
“conservative” or “isobaric conservative”.  Note that while h  is almost exactly 
“isobaric conservative”, it is not a “conservative” variable.   

 Some variables that are not “isobaric conservative” include potential 
temperature ,θ  internal energy ,u  entropy ,η  density ,ρ  potential density ,θρ  
and specific volume  v .   
 
 
 
The “potential” property  
 
Any thermodynamic property of seawater that remains constant when a parcel 
of seawater is moved from one pressure to another adiabatically, without 
exchange of mass and without interior conversion between its turbulent kinetic 
and internal energies, is said to possess the “potential” property, or in other 
words, to be a “potential” variable.  Prime examples of “potential” variables are 
entropy η , potential temperature θ  and potential density ρθ .  Recall that the 
constancy of entropy η  can be seen from the First Law of Thermodynamics in 
Eqn. (B.19) below; with the right-hand side of Eqn. (B.19) being zero, and with 
no change in Absolute Salinity, it follows that entropy is also constant.  Any 
thermodynamic property that is a function of only Absolute Salinity and 
entropy also remains unchanged by this procedure and is said to possess the 
“potential” property.   

 Recall that in oceanography we now define the word “adiabatic” to describe 
a process occurring without exchange of heat and also without the internal 
dissipation of kinetic energy.  With this definition of “adiabatic”, a process that 
is both isohaline and adiabatic does imply that the entropy η , potential 
temperature θ  and Conservative Temperature Θ  are all constant.   

 Thermodynamic properties that posses the “potential” attribute include 
potential temperature ,θ  potential enthalpy 0,h  Conservative Temperature Θ  
and potential density θρ  (no matter what fixed reference pressure is chosen).  
Some thermodynamic properties that do not posses the potential property are 
temperature ,t  enthalpy ,h  internal energy ,u  specific volume ,v  density ,ρ  
specific volume anomaly ,δ  total energy E  and the Bernoulli function .B   
From Eqn. (B.17) we notice that in the absence of molecular fluxes the Bernoulli 
function B  is constant following the fluid flow only if the pressure field is 
steady; in general this is not the case.  The non-potential nature of E  is 
explained in the discussion following Eqn. (B.17).   
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Oceanographers analyze “water-masses” on this   SA −Θ  diagram.  The salinity 
and temperature variables on these axes should be both “potential” properties, 
and “conservative” properties so that turbulent mixing processes can be 
accurately visualized on such a diagram.   

 A “water mass” is defined to be a line (not necessarily a straight line) on this 

  SA −Θ  diagram.   
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Table A.9.1  The “potential”, “conservative”, “isobaric conservative” and  
the functional nature, of various oceanographic variables  

 

 

Variable  

“p
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l”
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? 
  

 

function of ( )A, ,S t p ? 

*S     x 

AS   x 1 x 1  

t  x x x  

θ   x x  

η   x x  

h  x x 2  
0, hΘ   3 3  

u  x x x  

B  x x 4 x 

E  x x x x 

,vρ  x x x  
θρ   x x  

δ  x x x  
nγ  x x x x 

 
1 The remineralization of organic matter changes A.S    
2 Taking ε  and the effects of remineralization to be negligible.  
3 Taking ε  and other terms of similar size to be negligible (see the discussion 
   following Eqn. (A.21.13)).  
4 Taking the effects of remineralization to be negligible.   
 
In Table A.9.1 various oceanographic variables are categorized according to 
whether they posses the “potential” property, whether they are “conservative” 
variables, whether they are “isobaric conservative”, and whether they are 
functions of only ( )A, ,S t p .  Note that Θ  is the only variable that achieve four 
“ticks” in this table, while Preformed Salinity *S  has ticks in the first three 
columns, but not in the last column since it is a function not only of ( )A, ,S t p  
(since it also depends on the composition of seawater).  Hence Θ  is the most 
“ideal” thermodynamic variable.  If it were not for the non-conservation of 
Absolute Salinity, it too would be an “ideal” thermodynamic variable, but in this 
sense, Preformed Salinity is superior to Absolute Salinity.  Conservative 
Temperature Θ  and Preformed Salinity *S  are the only two variables in this 
table to be both “potential” and “conservative”.  The last three rows of Table 
A.9.1 are for potential density, θρ , specific volume anomaly, δ , and Neutral 
Density nγ .  We will discuss these variables later in the course.   

 In this course we are assuming that Absolute Salinity in 100% conservative 
(hence the yellow highlighting in the table above).  This is not strictly true.  The 
important thing is that we use Absolute Salinity and not Practical or Reference 
Salinity in an ocean model and as the salinity argument to the expression for 
density.  The non-conservative source term of Absolute Salinity is small on a 
timescale of less than a century.   
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Proof that ( )A,Sθ θ η=  and ( )A,S θΘ=Θ   
 
When a pressure change occurs adiabatically and without exchange of salinity, 
both entropy η  and Absolute Salinity   SA  are unchanged.  Potential temperature 
θ  and potential enthalpy are also unchanged during such an adiabatic and 
isohaline change in pressure, and since Conservative Temperature Θ  is 
proportional to potential enthalpy, it is also unchanged.  Since potential 
enthalpy is a function of only Absolute Salinity and potential temperature (and 
not separately a function of pressure), it follows that 

   
Θ = !Θ SA,θ( )  and 

  
θ = θ̂ SA,Θ( ) .  Similarly, entropy is a function of only Absolute Salinity and 
potential temperature (and not separately a function of pressure), and so it 
follows that 

   
θ =
⌢
θ SA,η( ) , 

   
Θ =
⌢
Θ SA,η( ) , 

   
η = !η SA,θ( )  and 

  
η = η̂ SA,Θ( ) . 

 So we see that the four variables   SA, θ , η  and Θ  are all “potential” 
variables, they are all properties of a seawater parcel, they are all independent of 
pressure, and they are related to each other in the sense that if you know any 
two of them, you know the other two.  Absolute Salinity   SA  has a clear meaning 
and is different in character to the other three variables  θ , η  and Θ  which are 
very “temperature-like” variables.   
 
 
Various isobaric derivatives of specific enthalpy  

We will not derive the following derivatives here, but here they are.   

   
∂

h ∂η

SA , p
= T0 + t( )  (A.11.5a) 

   
∂

h ∂SA η , p

= µ .  (A.11.5b) 

   

hθ SA , p
= cp SA,θ ,0( ) T0 + t( )

T0 +θ( ) = − T0 + t( )gTT SA,θ ,0( ).  (A.11.9) 

   

hSA θ , p
= µ SA,t, p( ) − T0 + t( )µT SA,θ ,0( )
= gSA

SA,t, p( ) − T0 + t( )gTSA
SA,θ ,0( ).

 (A.11.11) 

( )
( )A

0 0

, 0

ˆ .pS p

T t
h c

T θΘ
+

=
+

 (A.11.15) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

A

A A

0
A A, 0

0
A A

0

ˆ , , , ,0

, , , ,0 .

S p

S S

T t
h S t p S

T

T t
g S t p g S

T

µ µ θ
θ

θ
θ

Θ

+
= −

+

+
= −

+

 (A.11.18) 

 



     MATH5185  Thermodynamics Lectures, S1, 2013   36 

 

Differential relationships between , ,η θ Θ  and AS   
 
Taking specific enthalpy to be a function of potential temperature (rather than of 
temperature t ), that is, taking 

   
h = h SA,θ , p( ),  the fundamental thermodynamic 

relation (A.7.1) becomes  

   
hθ dθ + hSA

dSA = T0 + t( )dη + µdSA       while      
   
∂ h ∂P

SA ,θ
= v .  (A.11.6) 

Similarly, considering specific enthalpy to be a function of Conservative 
Temperature (rather than of temperature t ), that is, taking ( )A

ˆ , , ,h h S p= Θ  the 
fundamental thermodynamic relation (A.7.1) becomes  

( )A A 0 A
ˆ ˆd d d dSh h S T t Sη µΘ Θ + = + +       while      

A,
ˆ .

S
h P v

Θ
∂ ∂ =  (A.11.12) 

Using these forms of the Fundamental Thermodynamic Relation, together with 
the four boxed equations for the partial derivative of enthalpy (A.11.9), 
(A.11.11), (A.11.15) and (A.11.18), we find  

  

T0 + t( )dη+µ p( )dSA =
T0 + t( )
T0 +θ( ) cp 0( ) dθ + µ p( ) − T0 + t( )µT 0( )⎡⎣ ⎤⎦dSA

=
T0 + t( )
T0 +θ( ) cp

0 dΘ + µ p( ) − T0 + t( )
T0 +θ( ) µ 0( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dSA .

 (A.12.1) 

The quantity ( ) Adp Sµ  is now subtracted from each of these three expressions 
and the whole equation is then multiplied by ( ) ( )0 0T T tθ+ +  obtaining  

( ) ( ) ( ) ( ) ( )0
0 0 A Ad 0 d 0 d d 0 d .p T pT c T S c Sθ η θ θ µ µ+ = − + = Θ −  (A.12.2) 

From this follows all the following partial derivatives between , ,η θ Θ and A,S   

( )
A

0
A, ,0 ,p pS c S cθ θΘ =            ( ) ( ) ( )A

0
A 0 A, ,0 , ,0 ,S T pS T S c

θ
µ θ θ µ θ⎡ ⎤Θ = − +⎣ ⎦           (A.12.3) 

( )
A

0
0 ,pS
T cη θΘ = +                    ( )A

0
A, ,0 ,S pS c

η
µ θΘ =       (A.12.4) 

( ) ( )
A

0 A, ,0 ,pS
T c Sηθ θ θ= +       ( ) ( ) ( )A 0 A A, ,0 , ,0 ,S T pT S c S

η
θ θ µ θ θ= +                     (A.12.5) 

( )
A

0
A, ,0 ,p pS c c Sθ θΘ =    ( ) ( ) ( ) ( )A A 0 A A, ,0 , ,0 , ,0 ,S T pS T S c Sθ µ θ θ µ θ θ

Θ
⎡ ⎤= − − +⎣ ⎦  (A.12.6) 

( ) ( )
A A 0, ,0 ,pS c S Tθη θ θ= +        ( )A A, ,0 ,S T Sθ

η µ θ= −         (A.12.7) 

( )
A

0
0 ,pS c Tη θΘ = +                      ( ) ( )A A 0, ,0 .S S Tη µ θ θ

Θ
= − +    (A.12.8) 
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The First Law of Thermodynamics in terms of  θ ,η  and Θ   
 
Here we repeat the First Law of Thermodynamics  

   

ρ dh
dt

− v dP
dt

⎛
⎝⎜

⎞
⎠⎟

= ρ du
dt

+ p+ P0( )dv
dt

⎛
⎝⎜

⎞
⎠⎟

= ρ T0 + t( )dη
dt

+ µ
dSA

dt
⎛
⎝⎜

⎞
⎠⎟

= −∇⋅FR − ∇⋅FQ + ρε

 .       (B.19) 

We wish to interpret this statement as a conservation statement for a “potential” 
variable, since this is how ocean models treat their heat-like variable, which to 
date has been potential temperature θ .  None of enthalpy  h , internal energy  u  
or specific volume  v  are “potential” variables.  Rather, these variables change 
simply due to a change in pressure even in the absence of heat or salt fluxes.  
The “heat-like” variables that are “potential” variables are entropy η  potential 
temperature θ  and Conservative Temperature Θ .   

 The First Law of Thermodynamics, Eqn. (A.13.1), can be written as an 
evolution equation for entropy as (by taking 

   
h =

h SA,η, p( ) ) 

   
ρ T0 + t( )dη

dt
+ µ

dSA

dt
⎛
⎝⎜

⎞
⎠⎟
= −∇⋅FR −∇⋅FQ + ρε .  (A.13.3) 

The First Law of Thermodynamics can also be written in terms of potential 
temperature θ  (with respect to reference pressure   pr = 0 ) by taking 

   
h = h SA,θ , p( )  and using Eqns. (A.11.9) and (A.11.11) as  

   
ρ

T0 + t( )
T0 + θ( ) cp 0( )dθ

d t
+ µ p( ) − T0 + t( )µT 0( )⎡⎣ ⎤⎦

d SA

d t

⎛

⎝
⎜

⎞

⎠
⎟ = −∇⋅FR −∇⋅FQ + ρε ,    (A.13.4) 

while in terms of Conservative Temperature Θ , the First Law of 
Thermodynamics is (using 

  
h = ĥ SA, Θ, p( )  and Eqns. (A.11.15) and (A.11.18))  

   
ρ

T0 + t( )
T0 + θ( ) cp

0 dΘ
d t

+ µ p( ) − T0 + t( )
T0 + θ( ) µ 0( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

d SA

d t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= −∇⋅FR −∇⋅FQ + ρε .   (A.13.5) 

 A quick ranking of these three variables, ,η  θ  and ,Θ  from the viewpoint 
of the amount of their non-conservation, can be gleaned by examining the range 
of the red terms (at fixed pressure) that multiply the material derivatives on the 
left-hand sides of the above Eqns. (A.13.3), (A.13.4) and (A.13.5).   

 Why are we able to settle for examining the variation of these red terms 
only at constant pressure?  The ocean circulation may be viewed as a series of 
adiabatic and isohaline movements of seawater parcels interrupted by a series of 
isolated turbulent mixing events.  During any of the adiabatic and isohaline 
transport stages every “potential” property is constant, so each of the above 
variables, entropy, potential temperature and Conservative Temperature are 
100% ideal during these adiabatic and isohaline advection stages.  The turbulent 
mixing events occur at fixed pressure so the non-conservative production of say 
entropy depends on the extent to which the coefficients ( )0T t+  and µ  in Eqn. 
(A.13.3) vary at fixed pressure.  Similarly the non-conservative production of 
potential temperature depends on the extent to which the coefficients 

  
cp 0( ) T0 + t( ) T0 + θ( )  and 

  
µ p( ) − T0 + t( )µT 0( )⎡⎣ ⎤⎦  in Eqn. (A.13.4) vary at fixed 

pressure, while the non-conservative production of Conservative Temperature 
depends on the extent to which the coefficients ( ) ( )0 0T t T θ+ +  and 

( ) ( )( ) ( )0 00p T t Tµ µ θ⎡ ⎤− + +⎣ ⎦  in Eqn. (A.13.5) vary at fixed pressure.   

 According to this way of looking at these equations we note that the 
material derivative of entropy appears in Eqn. (A.13.3) multiplied by the 
absolute temperature ( )0T t+  which varies by about 15% at the sea surface 
( ( )273.15 40 273.15 1.146+ ≈ ), the term that multiplies d dtθ  in (A.13.4) is 
dominated by the variations in the isobaric specific heat ( )A r, ,pc S t p  which is 
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mainly a function of AS  and which varies by 5% at the sea surface (see Figure 4 
on page 1), while the material derivative of Conservative Temperature d dtΘ  in 
Eqn. (A.13.5) is multiplied by the product of a constant “heat capacity” 0

pc  and 
the factor ( ) ( )0 0T t T θ+ +  which varies very little in the ocean, especially when 
one realizes that it is only the variation of this ratio at each pressure level that is 
of concern.  This factor is unity at the sea surface and is also very close to unity 
in the deep ocean.   

 More quantitatively, the r.m.s. variation of these six terms is shown in the 
following figure (from Graham and McDougall (2013), Journal of Physical 
Oceanography, in press).  The variations of temperature in the ocean are about 
five times as large as the variations of Absolute Salinity (in g/kg) so if the 
horizontal axis of Fig (a) is divided by a factor of 5, the figures can be compared 
numerically.   

 This figure shows that both the red terms in the potential temperature 
version of the First Law contribute to non-conservation about equally (we will 
find out why shortly).  The non-constancy of the terms that multiply   dSA dt  in 
both the entropy and Conservative Temperature cases are very small compared 
to the variation of the terms multiplying   dη dt  and   dΘ dt  respectively.   

 So the ranking of the variables can be seen simply by looking at Fig (b), 
especially if we mentally move the dotted line (the line for θ ) to the right by a 
factor of two.   
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Review of Therm0_Lecture03_30April2013  
We discussed potential temperature, both for a real liquid (like seawater) and for 
a perfect gas, where things are considerably simpler.   

 We then extended the “potential” concept to enthalpy, defining potential 
enthalpy, and writing down the relationship between enthalpy and potential 
enthalpy as a pressure integral of specific volume.   

 The “conservative” and “isobaric conservative” properties were defined, 
and many oceanographic variables were categorized according to whether they 
are “potential” properties, “conservative” properties, “isobaric conservative” 
properties, and according to whether they are thermodynamic variables (that is, 
variables that are a function of Absolute Salinity, temperature and pressure).   

 We proved that once you know the Absolute Salinity of a seawater parcel 
and one of entropy, potential temperature or Conservative Temperature, then 
you know the other two “temperature-like” variables.   

 We used the various partial derivatives of enthalpy to rewrite the First 
Law of Thermodynamics  

   
ρ dh

dt
− v dP

dt
⎛
⎝⎜

⎞
⎠⎟

= −∇⋅FR − ∇⋅FQ + ρε  .  (B.19) 

as  

   
ρ T0 + t( )dη

dt
+ µ

dSA

dt
⎛
⎝⎜

⎞
⎠⎟
= −∇⋅FR −∇⋅FQ + ρε  , (A.13.3) 

   
ρ

T0 + t( )
T0 + θ( ) cp 0( )dθ

d t
+ µ p( ) − T0 + t( )µT 0( )⎡⎣ ⎤⎦

d SA

d t

⎛

⎝
⎜

⎞

⎠
⎟ = −∇⋅FR −∇⋅FQ + ρε ,    (A.13.4) 

   
ρ

T0 + t( )
T0 + θ( ) cp

0 dΘ
d t

+ µ p( ) − T0 + t( )
T0 + θ( ) µ 0( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

d SA

d t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= −∇⋅FR −∇⋅FQ + ρε .   (A.13.5) 

 We then estimated a rough ranking of entropy, potential temperature and 
Conservative Temperature, in terms of how “conservative” these variables are.  
We did this by simply seeing how much the partial derivative of enthalpy with 
respect to these variables varied at fixed pressure in the ocean.   
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Non-conservative production of entropy  
 
Here the non-conservative nature of entropy will be quantified by considering 
the mixing of a pair of seawater parcels at fixed pressure.  The mixing is taken to 
be complete so that the end state is a seawater parcel that is homogeneous in 
Absolute Salinity and entropy.  That is, we will be considering mixing to 
completion by a turbulent mixing process.  

 Consider the mixing of two fluid parcels (parcels 1 and 2) that have initially 
different temperatures and salinities.  The mixing process occurs at pressure .p   
The mixing is assumed to happen to completion so that in the final state 
Absolute Salinity, entropy and all the other properties are uniform.  Assuming 
that the mixing happens with a vanishingly small amount of dissipation of 
kinetic energy, the ε  term can be dropped from the First Law of 
Thermodynamics, (A.13.1), this equation becoming  

( ) ( ) R Q .th hρ ρ+ ∇⋅ = −∇⋅ −∇⋅u F F  at constant pressure (A.16.1) 

Note that this equation has the “conservative” form and so h  is conserved 
during mixing at constant pressure, that is, h  is “isobaric conservative”.  In the 
case we are considering of mixing the two seawater parcels, the system is closed 
and there are no radiative, boundary or molecular heat fluxes coming through 
the outside boundary so the integral over space and time of the right-hand side 
of Eqn. (A.16.1) is zero.  The surface integral of ( )hρ u  through the boundary is 
also zero.  Hence it is apparent that the volume integral of hρ  is the same at the 
final state as it is at the initial state, that is, enthalpy is conserved.  Hence during 
the mixing process the mass, salt content and enthalpy are conserved, that is  

1 2 ,m m m+ =  (A.16.2) 

  m1 SA1 + m2SA2 = mSA ,  (A.16.3) 

1 1 2 2 ,m h m h mh+ =  (A.16.4) 

while the non-conservative nature of entropy means that it obeys the equation,  

1 1 2 2 .m m m mη η δη η+ + =  (A.16.5) 

Here A,S h  and η  are the values of Absolute Salinity, enthalpy and entropy of 
the final mixed fluid and δη  is the production of entropy, that is, the amount by 
which entropy is not conserved during the mixing process.  Entropy η  is now 
regarded as the functional form 

   
η = η SA,h, p( )  and is expanded in a Taylor 

series of AS  and h  about the values of AS  and h  of the mixed fluid, retaining 
terms to second order in [ ]A2 A1 AS S S− = Δ  and in [ ]2 1 .h h h− = Δ   Then 1η  and 2η  
are evaluated and (A.16.4) and (A.16.5) used to find    

   
δη = − 1

2
m1 m2

m2
ηhh Δh( )2

+ 2 ηhSA
ΔhΔSA + ηSASA

ΔSA( )2{ } .  (A.16.6) 

 Shortly we will explore the production (A.16.6) of entropy will be 
quantified, but for now we ask what constraints the Second Law of 
Thermodynamics might place on the form of the Gibbs function ( )A, ,g S t p  of 
seawater.  The Second Law of Thermodynamics tells us that the entropy excess 
δη  must not be negative for all possible combinations of the differences in 
enthalpy and salinity between the two fluid parcels.  From (A.16.6) this 
requirement implies the following three inequalities, 

    
ηhh < 0 ,       

   
ηSASA

< 0 ,  (A.16.8) 

   
ηhSA( )2

< ηhh
ηSASA

,  (A.16.9) 

where the last requirement reflects the need for the discriminant of the quadratic 
in (A.16.6) to be negative.  Since entropy is already a first derivative of the Gibbs 
function, these constraints would seem to be three different constraints on 
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various third derivatives of the Gibbs function.  In fact, we will see that they 
amount to only two rather well-known constraints on second order derivatives 
of the Gibbs function.   

 From the fundamental thermodynamic relation (A.7.1) we find that (where 
T  is the absolute temperature, 0T T t= + )  

  
   

ηh = ∂η
∂h SA , p

= 1
T

 (A.16.10) 

   

ηSA
= ∂η

∂SA h, p

= − µ
T

,  (A.16.11) 

and from these relations the following expressions for the second order 
derivatives of  

η  can be found,  

   

ηhh = ∂2η
∂h2

SA , p

= ∂T −1

∂h
SA , p

= −T −2

cp
,  (A.16.12) 

   

ηSAh = ∂2η
∂h∂SA p

=
∂ −µ T( )

∂h
SA , p

= − 1
cp

µ
T

⎛
⎝⎜

⎞
⎠⎟T

,  (A.16.13) 

   

ηSASA
= ∂2η

∂SA
2

h, p

=
∂ −µ T( )
∂SA T , p

−
∂ −µ T( )

∂h
SA , p

∂h
∂SA T , p

= −
µSA

T
− T 2

cp

µ
T

⎛
⎝⎜

⎞
⎠⎟T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

.

 (A.16.14) 

The last equation comes from regarding 
   
ηSA

 as 
   
ηSA

= ηSA
SA,h SA,t, p⎡⎣ ⎤⎦ , p( ).    

 The constraint (A.16.8) that    
ηhh < 0  simply requires (from (A.16.12)) that the 

isobaric heat capacity pc  is positive, or that 0 .TTg <   Physically this constraint 
simply means that when you apply heat to a fluid parcel it warms up, rather 
than cools down.   
 The constraint (A.16.8) that 

   
ηSASA

< 0 ,  requires (from (A.16.14)) that  

A A

23
,S S

p T

Tg
c T

µ⎡ ⎤⎛ ⎞> − ⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦
 (A.16.15) 

that is, the second derivative of the Gibbs function with respect to Absolute 
Salinity 

A AS Sg  must exceed some negative number.  The constraint (A.16.9) that 

   
( ηhSA

)2 < ηhh
ηSASA

 requires that (substituting from (A.16.12), (A.16.13) and 
(A.16.14))  

A A
3 0 ,S S

p

g
T c

>  (A.16.16) 

and since the isobaric heat capacity must be positive, this requirement is that 

A A
0 ,S Sg >  and so is more demanding than (A.16.15).   

 We conclude that while there are the three requirements (A.16.8) to (A.16.9) 
on the functional form of entropy 

   
η = η SA,h, p( )  in order to satisfy the constraint 

of the Second Law of Thermodynamics that entropy be produced when water 
parcels mix, these three constraints are satisfied by the following two constraints 
on the form of the Gibbs function ( )A, ,g S t p ,  

0TTg <  (A.16.17) 
and  

A A
0.S Sg >  (A.16.18) 

The Second Law of Thermodynamics does not impose any additional 
requirement on the cross derivatives 

AS Tg  nor on any third order derivatives of 
the Gibbs function!  (In any case, recall that 

AS Tg  is completely arbitrary and 
unknowable.)  
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 The constraint 
  
gSASA

> 0  can be understood by considering the molecular 
diffusion of salt, which, in an isothermal ocean, is known to be directed down 
the gradient of chemical potential ( )A, ,S t pµ  (see Eqn. (B.21)).  That is, the 
molecular flux of salt is proportional to .µ−∇   Expanding µ−∇  in terms of 
gradients of Absolute Salinity, of temperature, and of pressure, one finds that 
the first term is 

A AS Sµ− ∇  and in order to avoid an unstable explosion of salt one 
must have 

A A A
0.S S Sgµ = >   Hence the constraint (A.16.18) amounts to the 

requirement that the molecular diffusivity of salt is positive.  The following 
figure shows that, indeed, 

  
gSASA

= µSA
> 0 .   

 

 The two constraints (A.16.17) and (A.16.18) on the Gibbs function are well 
known in the thermodynamics literature.  Landau and Lifshitz (1959) derive 
them on the basis of the contribution of molecular fluxes of heat and salt to the 
production of entropy (their equations 58.9 and 58.13).  It is pleasing to obtain 
the same constraints on the seawater Gibbs function from the above Non-
Equilibrium Thermodynamics approach of mixing fluid parcels since this 
approach involves turbulent mixing which is the type of mixing that dominates 
in the ocean; molecular diffusion has the complementary role of dissipating 
tracer variance.   

 When the mixing process occurs at 0,p =  the expression (A.16.6) for the 
production of entropy can be expressed in terms of Conservative Temperature 
Θ  (since Θ  is simply proportional to h  at 0p = ) as follows (now entropy is 
taken to be the functional form ( )Aˆ ,Sη η= Θ )  

( ) ( ){ }A A A

2 21 21
A A2 2

ˆ ˆ ˆ2 .S S S
m m S S
m

δη η η ηΘΘ Θ= − ΔΘ + ΔΘΔ + Δ  (A.16.22) 

The maximum production occurs when parcels of equal mass are mixed so that 
21 1

1 22 8m m m− =  and we adopt this value in what follows.  To illustrate the 
magnitude of this non-conservation of entropy we first scale entropy by a 
dimensional constant so that the resulting variable (“entropic temperature”) has 
the value 25 C°  at ( ) ( )A SO, ,25 CS SΘ = °  and then Θ  is subtracted.  The result is 
contoured in AS − Θ space in Figure A.16.1.   
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 The fact that the variable in Figure A.16.1 is not zero over the whole AS − Θ 
plane is because entropy is not a conservative variable.  The non-conservative 
production of entropy can be read off this figure by selecting two seawater 
samples and mixing along the straight line between these parcels and then 
reading off the production (in C° ) of entropy from the figure.  Taking the most 
extreme situation with one parcel at ( ) ( )1

A, 0 gkg ,0 CS −Θ = °  and the other at the 
warmest and saltiest corner of the figure, the production of η  on mixing parcels 
of equal mass is approximately 0.9 C° .   

 
Figure A.16.1.  Contours (in C° ) of a variable which illustrates the  
                           non-conservative production of entropy η  in the ocean.   

 Since entropy can be expressed independently of pressure as a function of 
only Absolute Salinity and Conservative Temperature ( )Aˆ ,Sη η= Θ , and since at 
any pressure in the ocean both AS  and Θ  may quite accurately be considered 
conservative variables, it is clear that the non-conservative production given by 
(A.16.22) and illustrated in Figure A.16.1 is very nearly equivalent to the slightly 
more accurate expression (A.16.6) which applies at any pressure.  The only 
discrepancy between the production of entropy calculated from (A.16.22) and 
that from (A.16.6) is due to the very small non-conservative production of Θ  at 
pressures other than zero (as well as the fact that both expressions contain only 
the second order terms in an infinite Taylor series).   
 
 
Non-conservative production of potential temperature  
 
When fluid parcels undergo irreversible and complete mixing at constant 
pressure, the thermodynamic quantities that are conserved during the mixing 
process are mass, Absolute Salinity and enthalpy.  As in the case of entropy, we 
again consider two parcels being mixed without external input of heat or mass 
and the three equations that represent the conservation of these quantities are 
again Eqns. (A.16.2) – (A.16.4).  The production of potential temperature during 
the mixing process is given by  

1 1 2 2 .m m m mθ θ δθ θ+ + =  (A.17.1) 

Enthalpy in the functional form 
   
h = h SA,θ , p( )  is expanded in a Taylor series of 

AS  and θ  about the values AS  and θ  of the mixed fluid, retaining terms to 
second order in [ ]A2 A1 AS S S− = Δ  and in [ ]2 1 .θ θ θ− = Δ   Then 1h  and 2h  are 
evaluated and Eqns. (A.16.4) and (A.17.1) used to find  

   

δθ = 1
2

m1 m2

m2

hθθ
hθ

Δθ( )2
+ 2
hθSA
hθ

Δθ ΔSA +
hSASA
hθ

ΔSA( )2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. (A.17.2) 
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The maximum production occurs when parcels of equal mass are mixed so that 
21 1

1 22 8 .m m m− =   The “heat capacity”   
hθ  is not a strong function of θ  but is a 

stronger function of   SA  so the first term in the curly brackets in Eqn. (A.17.2) is 
generally small compared with the second term.  Also, the third term in Eqn. 
(A.17.2) which causes the so-called “dilution heating”, is usually small 
compared with the second term.  A typical value of 

   
hθSA

 is approximately –5.4 
1 1 1 1J kg K (g kg )− − − −  (see the dependence of isobaric heat capacity on AS  in 

Figure 4 on page 1) so that an approximate expression for the production of 
potential temperature δθ  is  

   

δθ
Δθ

≈ 1
4
hθSA

ΔSA
hθ ≈ − 3.4x10−4 ΔSA / [g kg−1]( ) .  (A.17.3) 

 The same form of the non-conservative production terms in Eqn. (A.17.2) 
also appears in the following turbulent evolution equation for potential 
temperature, in both the epineutral and vertical diffusion terms (Graham and 
McDougall, 2013).  (See later for an explanation of the symbols that appear in 
this thickness-weighted averaged equation.)  

    

dθ̂
dt

= ∂θ̂
∂t

n

+ v̂ ⋅∇nθ̂ + e ∂θ̂
∂z

= γ z∇n ⋅ γ z
−1K∇nθ̂( ) + Dθ̂z( )

z
+ε hθ

+ K
hθθ
hθ

∇nθ̂ ⋅∇nθ̂ + 2
hθSA
hθ

∇nθ̂ ⋅∇nŜA +
hSASA
hθ

∇nŜA ⋅∇nŜA

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ D
hθθ
hθ

θ̂z
2 + 2

hθSA
hθ

θ̂z ŜAz
+
hSASA
hθ

ŜAz( )2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

    (A.17.4) 

 Since potential temperature ( )A
ˆ ,Sθ θ= Θ  can be expressed independently 

of pressure as a function of only Absolute Salinity and Conservative 
Temperature, and since during turbulent mixing both AS  and Θ  may be 
considered approximately conservative variables (see section A.18 below), it is 
clear that the non-conservative production given by (A.17.2) can be 
approximated by the corresponding production of potential temperature that 
would occur if the mixing had occurred at 0p = , namely  

   

δθ ≈ 1
2

m1 m2

m2

Θθθ
Θθ

Δθ( )2
+ 2
ΘθSA
Θθ

Δθ ΔSA +
ΘSASA
Θθ

ΔSA( )2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (A.17.5) 

where the exact proportionality between potential enthalpy and Conservative 
Temperature 0 0

ph c≡ Θ  has been exploited.  The maximum production occurs 
when parcels of equal mass are mixed so that 21 1

1 22 8m m m− =  and we adopt this 
value in what follows.   

 Equations (A.17.2) or (A.17.5) may be used to evaluate the non-conservative 
production of potential temperature due to mixing a pair of fluid parcels across 
a front at which there are known differences in salinity and temperature.  The 
temperature difference θ −Θ  is contoured in Figure A.17.1 and can be used to 
illustrate Eqn. (A.17.5).  δθ  can be read off this figure by selecting two seawater 
samples and mixing along the straight line between these parcels (along which 
both Absolute Salinity and Conservative Temperature are conserved) and then 
calculating the production (in C° ) of θ  from the contoured values of θ −Θ .  
Taking the most extreme situation with one parcel at ( ) ( )1

A, 0 g kg ,0 CS −Θ = °  
and the other at the warmest and saltiest corner of Figure A.17.1, the non-
conservative production of θ  on mixing parcels of equal mass is approximately 
-0.55 C° .  This is to be compared with the corresponding maximum production 
of entropy, as discussed above in connection with Figure A.16.1, of 
approximately 0.9 C° .   
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Figure A.17.1.  Contours (in C° ) of the difference between potential temperature  
and Conservative Temperature θ −Θ .  This plot illustrates the non-conservative 
production of potential temperature θ  in the ocean.   

 

 
How NOT to quantify the error involved in using potential temperature  

If Figure A.17.1 were to be used to quantify the errors in oceanographic practice 
incurred by assuming that θ  is a conservative variable, one might select 
property contrasts that were typical of a prominent oceanic front and decide that 
because δθ  is small at this one front, that the issue can be ignored.  But the 
observed properties in the ocean result from a large and indeterminate number 
of such prior mixing events and the non-conservative production of θ  
accumulates during each of these mixing events, often in a sign-definite fashion.  
How can we possibly estimate the error that is made by treating potential 
temperature as a conservative variable during all of these unknowably many 
past individual mixing events?  

 
How to quantify the error involved in using potential temperature  

 This seemingly difficult issue is partially resolved by considering what is 
actually done in ocean models today.  These models carry a temperature 
conservation equation that does not have non-conservative source terms, so that 
the model’s temperature variable is best interpreted as being Θ .  If an ocean 
model is written with potential temperature θ  as the prognostic temperature 
variable rather than Conservative Temperature Θ , and is run with the same 
constant value of the isobaric specific heat capacity 0

pc  , the neglect of the non-
conservative source terms that should appear in the prognostic equation for θ  
means that such an ocean model incurs errors in the model output.  These errors 
will depend on the nature of the surface boundary condition; for flux boundary 
conditions the errors are as shown in Figure A.17.1, because in this case the 
model’s temperature variable is actually Conservative Temperature Θ  but has 
been interpreted and initialized incorrectly as potential temperature θ .   
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 The contoured values of temperature difference in Figure A.17.1 
encapsulate the accumulated non-conservative production that has occurred 
during all the many mixing processes that have lead to the ocean’s present state.  
The maximum such error for η  is approximately -1.0 C°  (from Figure A.16.1) 
while for θ  the maximum error is approximately -1.8 C°  (from Figure A.17.1).  
From the curvature of the isolines on Figure A.17.1 it is clear that the non-
conservative production of θ  takes both positive and negative signs.   

 Here is an enlarged view of θ −Θ  on the   SA −Θ  diagram, and also of the 
error involved with using another previous suggestion for the “heat content” of 
seawater, 

  
θ cp SA,θ , p( ) / cp

0 .   
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 One percent of the data at the sea surface of the world ocean have values of 
θ −Θ  that lie outside a range that is 0.25 C°  wide (see Figure A.13.1), implying 
that this is the magnitude of the error incurred by ocean models when they treat 
θ  as a conservative quantity.  To put a temperature difference of 0.25 C°  in 
context, this is the typical difference between in situ and potential temperatures 
for a pressure difference of 2500 dbar, and it is approximately 100 times as large 
as the typical differences between 90t  and 68t  in the ocean.   

 

 
Figure A.13.1.  The difference θ −Θ  (in C° )  between potential temperature θ  
and Conservative Temperature Θ  at the sea surface of the annually-averaged 
atlas of Gouretski and Koltermann (2004).  
 
 

 

The maximum value of the seasonal variation in θ −Θ  (in C° ) at the sea surface 
throughout the annual cycle of the hydrographic atlas of Gouretski and 
Koltermann (2004).  
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Review of Therm0_Lecture04_02May2013  
We examined the process of turbulent mixing and showed that in order for the 
Second Law of Thermodynamics to be obeyed (and entropy to be always 
produced), there are only two constraints on the form of the Gibbs function, 
namely  

0TTg <  (A.16.17) 
and  

A A
0.S Sg >  (A.16.18) 

These constraints mean that (i) the fluid must increase its temperature when it is 
heated, and (ii) the solute should not spontaneously “unmix”.  These constraints 
on the Gibbs function are well known from considerations of molecular fluxes.  
It is encouraging that they emerge also from the turbulent mixing process, which 
happens quite independently of the form of the molecular fluxes.   

 We considered the turbulent mixing of pairs of seawater parcels that had 
finite amplitude differences of Absolute Salinity and of temperature.  By 
employing a Taylor series analysis, we were able to get an expression for the 
non-conservative production of entropy and of potential temperature when the 
parcels are mixed to uniformity.   

 We were able to illustrate the non-conservative production of entropy and 
of potential temperature, when mixing occurs between pairs of fluid parcels, on 
the following carefully-constructed diagrams.   

 

 

 We then showed that these diagrams are the measure of the error involved 
with assuming that entropy or potential temperature is conserved in the ocean.  
Because of the unknowably many mixing events in the life-history of a seawater 
parcel, these diagrams illustrate the sum of these non-conservative sources in the 
past, over many different mixing events over the past 1000 years.   
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Non-conservative production of Conservative Temperature  
 
When fluid parcels undergo irreversible and complete mixing at constant 
pressure, the thermodynamic quantities that are conserved are mass, Absolute 
Salinity and enthalpy.  As above we consider two parcels being mixed without 
external input of heat or mass, and the three equations that represent the 
conservation of these quantities are Eqns. (A.16.2) – (A.16.4).  Neither potential 
enthalpy   h0  nor Conservative Temperature Θ  are exactly conserved during the 
mixing process and the production of Θ  is given by  

1 1 2 2 .m m m mδΘ + Θ + Θ = Θ  (A.18.1) 

Enthalpy in the functional form ( )A
ˆ , ,h h S p= Θ  is expanded in a Taylor series of 

AS  and Θ  about the values AS  and Θ  of the mixed fluid, retaining terms to 
second order in [ ]A2 A1 AS S S− = Δ  and in [ ]2 1 .Θ −Θ = ΔΘ   Then 1h  and 2h  are 
evaluated and Eqns. (A.16.4) and (A.18.1) are used to find  

( ) ( )A A A2 21 21
A A2 2

ˆ ˆˆ
2 .ˆ ˆ ˆ

S S Sh hhm m S S
m h h h

δ ΘΘΘ

Θ Θ Θ

⎧ ⎫⎪ ⎪Θ = ΔΘ + ΔΘΔ + Δ⎨ ⎬
⎪ ⎪⎩ ⎭

 (A.18.2) 

Graham and McDougall (2013) have shown that the same form of the non-
conservative production terms in Eqn. (A.18.2) also appears in the following 
turbulent evolution equation for Conservative Temperature, in both the 
epineutral and vertical diffusion terms (see appendix A.21 for an explanation of 
the symbols that appear in this thickness-weighted averaged equation),  

    

dΘ̂
dt

= ∂Θ̂
∂t

n

+ v̂ ⋅∇nΘ̂ + e ∂Θ̂
∂z

= γ z∇n ⋅ γ z
−1K∇nΘ̂( ) + DΘ̂z( )

z
+ε ĥΘ

+ K
ĥΘΘ
ĥΘ

∇nΘ̂ ⋅∇nΘ̂+ 2
ĥΘSA

ĥΘ
∇nΘ̂ ⋅∇nŜA +

ĥSASA

ĥΘ
∇nŜA ⋅∇nŜA

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ D
ĥΘΘ
ĥΘ

Θ̂z
2 + 2

ĥΘSA

ĥΘ
Θ̂z ŜAz

+
ĥSASA

ĥΘ
ŜAz( )2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

    (A.18.3) 

 In order to evaluate the partial derivatives in Eqns. (A.18.2) and (A.18.3), 
first write enthalpy in terms of potential enthalpy ( 0

pc Θ ) using Eqn. (3.2.1), as  

  
h = ĥ SA,Θ, p( ) = cp

0 Θ + v̂ SA,Θ, ′p( )
P0

P

∫ d ′P .  (A.18.4) 

This is differentiated with respect to Θ  giving  

A 0

0
,

ˆ .
P

pS p P
h h c dPα ρΘ
Θ Θ ′= = + ∫  (A.18.5) 

The right-hand side of Eqn. (A.18.5) scales as ( )0 1
0 ,pc P Pρ α− Θ+ −  which is more 

than 0
pc  by only about 00.0015 pc  for ( )0P P−  of 74 10×  Pa (4,000 dbar).  Hence, to 

a very good approximation, ĥΘ  in Eqns. (A.18.2) and (A.18.3) may be taken to be 
simply 0

pc .  It is interesting to examine why this approximation is so accurate 
when the difference between enthalpy, ,h  and potential enthalpy, 0,h  as given 
by Eqns. (3.2.1) and (A.18.4), scales as 1Pρ−  which is as large as typical values of 
potential enthalpy.  The reason is that the integral in Eqns. (3.2.1) or (A.18.4) is 
dominated by the integral of the mean value of 1,ρ −  so causing a significant 
offset between h  and 0h  as a function of pressure but not affecting the partial 
derivative ĥΘ  which is taken at fixed pressure.  Even the dependence of density 
on pressure alone does not affect ˆ .hΘ    

 Recall from Eqn. (A.11.15), namely  

  
ĥΘ SA ,p

=
T0 + t( )
T0 +θ( ) cp

0 .  (A.11.15) 
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and combining this with (A.18.5) we see that  

  

t − θ( )
T0 +θ( ) cp

0 = αΘ ρ
P0

P

∫ d ′P = v̂Θ SA,Θ, ′p( )
P0

P

∫ d ′P  (A.18.5a) 

which is an interesting relationship between a temperature difference on the left-
hand side (which is related directly to the entropy function) and a pressure 
integral of essentially the thermal expansion coefficient on the right-hand side.   

 The second order derivatives of ĥ  are needed in Eqns. (A.18.2) and (A.18.3), 
and these can be estimated by differentiating Eqn. (A.18.4) or (A.18.5), so that, 
for example,  

( )
0 0

ˆ ˆ ,
P P

P P
h v dP dPα ρΘ
ΘΘ ΘΘ Θ

′ ′= =∫ ∫  (A.18.6) 

so that we may write Eqn. (A.18.2) approximately as (assuming 1 2m m= )  

( ) ( ) ( ){ }A A A

2 20
A A0 ˆ ˆ ˆ2 .

8 S S S
p

P P
v v S v S

c
δ ΘΘ Θ

−
Θ ≈ ΔΘ + ΔΘΔ + Δ  (A.18.7) 

This equation is approximate because the variation of 
  
v̂ΘΘ , v̂ΘSA

 and 
  
v̂SASA

 with 
pressure has been ignored.  The dominant term in Eqn. (A.18.7) is usually the 
term in v̂ΘΘ  and from Eqn. (A.19.2) below we see that δΘ  is approximately 
proportional to the non-conservative destruction of specific volume at fixed 
pressure caused by the “cabbeling” non-linearities in the equation of state 
(McDougall, 1987b), so that  

( ) ( ) ( )20 0
0 0

ˆ .
8 p p

P P P P
v v

c c
δ δΘΘ

− −
Θ ≈ ΔΘ ≈ −  (A.18.8) 

The production of Θ  causes an increase in Conservative Temperature and a 
consequent decrease in density of ρα δΘ− Θ .  The ratio of this change in density 
(using Eqn. (A.18.7)) to that caused by cabbeling (from Eqn. (A.19.2) and using 

2 vδρ ρ δ≈ − ) is ( ) 0
0 pP P cα ρΘ− −  which is about 0.0015 for a value of ( )0P P−  of 

40 MPa.  Hence it is clear that cabbeling has a much larger effect on density than 
does the non-conservation of .Θ   Nevertheless, it is interesting to note from Eqn. 
(A.18.7) that the non-conservative production of Θ  is approximately 
proportional to the product of sea pressure and the strength of cabbeling.   

 The first term in the bracket in Eqn. (A.18.7) is usually about a factor of ten 
larger than the other two terms, so the production of Conservative Temperature 
δΘ  as a ratio of the contrast in Conservative Temperature 2 1ΔΘ = Θ −Θ  may be 
approximated as (since 2 1ˆv̂ ρ ρ ρ α− − Θ

ΘΘ ΘΘ Θ≈ − ≈ ) 

( ) ( )( )0 9
0 3.3 10 dbar K .

8 p

P P
p

c
αδ

ρ

Θ
Θ −− ΔΘΘ ≈ ≈ × ΔΘ

ΔΘ
 (A.18.9) 

where αΘ
Θ  has been taken to be 5 21.1 10 K− −× .   

 At the sea surface Conservative Temperature Θ  is totally conserved 
( 0δΘ = ).  The expression for the non-conservative production of Conservative 
Temperature, ,δΘ  increases almost linearly with pressure (see Eqn. (A.18.7)) but 
at larger pressure the range of temperature and salinity in the ocean decreases, 
and from the above equations it is clear that the magnitude of δΘ  is 
proportional to the square of the temperature and salinity contrasts.  McDougall 
(2003) concluded that the production δΘ  between extreme seawater parcels at 
each pressure is largest at 600 dbar.  The magnitude of the non-conservative 
production of Conservative Temperature, ,δΘ  is illustrated in Figure A.18.1 for 
data at this pressure.   
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Figure A.18.1.  Contours (in C° ) of a variable that is used to illustrate the non- 
conservative production of Conservative Temperature Θ  at 600p =  dbar.  The 
cloud of points show where most of the oceanic data reside at 600p =  dbar.  
The three points that are forced to be zero are shown with black dots.   
 

 The quantity contoured on this figure is the difference between Θ  and the 
following totally conservative quantity at 600p =  dbar.  This conservative 
quantity was constructed by taking the conservative property enthalpy h  at this 
pressure and adding the linear function of AS  which makes the result equal to 
zero at ( )A 0, 0 CS = Θ= °  and at ( )1

A 35.165 04gkg , 0 C .S −= Θ= °   This quantity is 
then scaled so that it becomes 25 C°  at ( )1

A 35.165 04gkg , 25 C .S −= Θ = °   In this 
manner the quantity that is contoured in Figure A.18.1 has units of C°  and 
represents the amount by which Conservative Temperature Θ  is not a totally 
conservative variable at a pressure of 600 dbar.  The maximum amount of 
production by mixing seawater parcels at the boundaries of Figure A.18.1 is 
about 34 10 C−× °  although the range of values encountered in the real ocean at 
this pressure is actually quite small, as indicated in Figure A.18.1.   

 From the curvature of the isolines on Figure A.18.1 it is clear that the non-
conservative production of Conservative Temperature at 600p =  dbar is 
positive, so that an ocean model that ignores this production of Conservative 
Temperature will slightly underestimate Θ .  From Eqn. (A.18.2) one sees the 
non-conservative production of Conservative Temperature is always positive if 
ˆ 0hΘΘ > , 

A A
ˆ 0S Sh >  and 

A A A
2ˆ ˆ ˆ( )S S Sh h hΘ ΘΘ< , and Graham and McDougall (2013) 

have shown that these requirements are met everywhere in the full TEOS-10 
ranges of salinity, temperature and pressure for both the full TEOS-10 Gibbs 
function and for the 48-term approximate expression for specific enthalpy of 
Appendix A.30.   

 From Eqns. (A.18.9) and (A.17.3) we can write the ratio of the production of 
Conservative Temperature to the production of potential temperature when two 
seawater parcels mix as the approximate expression  

( )( )( ) 15 1
A10 dbar K / [g kg ] .p Sδ

δθ
−− −Θ ≈ − ΔΘ Δ  (A.18.10) 

Taking a typical ratio of temperature differences to salinity differences in the 
deep ocean to be 15K / [gkg ]− , Eqn. (A.18.10) becomes 

( )55 10 dbar .x pδ δθ −Θ ≈ −   At a pressure of 4000 dbar this ratio is 
0.2δ δθΘ ≈ −  implying that Conservative Temperature is a factor of five more 

conservative than potential temperature at these great depths.  Note also that the 
temperature and salinity contrasts in the deep ocean are small, so the non-
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conservation of both types of temperature amount to very small temperature 
increments of both δθ  and .δΘ   The largest non-conservative increment of 
Conservative Temperature δΘ  seems to occur at a pressure of about 600 dbar 
(McDougall (2003)) and this value of δΘ  is approximately two orders of 
magnitude less than the maximum value of δθ  which occurs at the sea surface.   
 
 
Non-conservative production of specific volume  
 
Specific volume is expressed as a function of Absolute Salinity AS , specific 
enthalpy h  and pressure as 

   
v = v SA,h, p( )  and the same mixing process between 

two fluid parcels is considered as in the previous appendices.  Mass, salt and 
enthalpy are conserved during the turbulent mixing process (Eqns. (A.16.2) - 
(A.16.4)) while the non-conservative nature of specific volume means that it 
obeys the equation,  

1 1 2 2 .m v m v m v mvδ+ + =  (A.19.1) 

Specific volume is expanded in a Taylor series of AS  and Θ  about the values of 

AS  and Θ  of the mixed fluid at pressure p , retaining terms to second order in 
[ ]A2 A1 AS S S− = Δ  and in [ ]2 1 .h h h− = Δ   Then 1v  and 2v  are evaluated and 
(A.19.1) is used to find  

   

δv = − 1
2

m1 m2

m2
vhh Δh( )2

+ 2 vhSA
ΔhΔSA + vSASA

ΔSA( )2{ }
≈ − 1

2
m1 m2

m2 v̂ΘΘ ΔΘ( )2
+ 2 v̂ΘSA

ΔΘΔSA + v̂SASA
ΔSA( )2{ }.

 (A.19.2) 

The non-conservative destruction of specific volume of Eqn. (A.19.2) is 
illustrated in Figure A.19.1 for mixing at 0p =  dbar.  The quantity contoured on 
this figure is formed as follows.  First the linear function of AS  is found that is 
equal to specific volume at ( )A 0, 0 CS = Θ= °  and at 
( )1
A 35.165 04gkg , 0 C .S −= Θ= °   This linear function of AS  is subtracted from v  

and the result is scaled to equal 25 C°  at ( )1
A 35.165 04gkg , 25 C .S −= Θ= °   The 

variable that is contoured in Figure A.19.1 is the difference between this scaled 
linear combination of v  and AS , and Conservative Temperature.  This figure 
allows the non-conservative nature of specific volume to be understood in 
temperature units.  The mixing of extreme fluid parcels on Figure A.19.1 causes 
the same decrease in specific volume as a cooling of approximately 10 C° , which 
is approximately 4000 times larger than the corresponding non-conservative 
production of Θ  at 600dbar (from Figure A.18.1).   

 
Figure A.19.1.  Contours (in C° ) of a variable that is used to illustrate the non- 
conservative production of specific volume at p = 0 dbar.  The three points that 
are forced to be zero are shown with black dots.   
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 From Eqn. (A.19.2) it follows that specific volume is always destroyed by 
turbulent mixing processes if    

vhh > 0 , 
   
vSASA

> 0  and 
   
(vhSA

)2 < vSASA

vhh , and 
Graham and McDougall (2013) have shown that these conditions are satisfied 
over the full TEOS-10 ranges of salinity, temperature and pressure by both the 
full TEOS-10 Gibbs function and by the 48-term expression for specific volume.  
Note that in contrast to the case of specific volume, the non-conservation of 
density is not sign-definite.  That is, while turbulent mixing always destroys 
specific volume, it does not always produce density   ρ = v−1 .   

 The fact that turbulent mixing at constant pressure always destroys specific 
volume also implies that internal energy is always produced by this turbulent 
mixing at constant pressure (see the First Law of Thermodynamics, Eqn. (B.19)).   
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Depth-integrated measures of the non-conservation of  θ ,η  and Θ    
 
Graham and McDougall (2013) have derived the evolution equations for 
potential temperature, Conservative Temperature and specific entropy in a 
turbulent ocean, with the one for Conservative Temperature, Eqn. (A.18.3), 
being repeated here.   
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dt

= ∂Θ̂
∂t

n
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    (A.18.3) 

The red terms on the second and third lines of this equation are the non-
conservative production terms and they can be evaluated in an ocean model.  
One way of quantifying how big they are is to vertically integrate these terms 
and to express this vertical integral as a vertical heat flux.  Consider a vertical 
ocean water column that is the full depth of the ocean and is one square meter in 
area.  The vertical integral of the red source terms is the equivalent extra air-sea 
or geothermal heat flux that is required to be equal to the effect of the neglected 
non-conservative terms.  This is shown as a histogram for the whole world 
ocean in the figure below.   

 
The 95 percentile largest values of these four error measures is shown below.   

 
This demonstrates that the non-conservative source terms of potential 
temperature are two orders of magnitude larger than those for Conservative 
Temperature, and that the dissipation of kinetic energy is almost an order of 
magnitude larger than the non-conservative source terms in the evolution 
equation for Conservative Temperature.   

 To put this in perspective, the mean geothermal heat flux is ~86.4 mW m-2, 
and the extra surface heat flux that the planet is receiving now from global 
warming is ~1.5 W m-2.   
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Advective and diffusive “heat” fluxes  

The turbulent flux of a “potential” property can be thought of as the exchange of 
parcels of equal mass but contrasting values of the “potential” property, and the 
turbulent flux can be parameterized as being down the gradient of the 
“potential” property.  The conservative form of Eqn. (A.21.15) implies that the 
turbulent flux of heat should be directed down the mean gradient of 
Conservative Temperature rather than down the mean gradient of potential 
temperature.  Here we quantify the ratio of the mean gradients of potential 
temperature and Conservative Temperature along the neutral tangent plane; 
along a surface of constant “density” if you like.   

 The epineutral gradients of θ , Θ  and AS  are related by (using 
( )A
ˆ ,Sθ θ= Θ )  

A A
ˆ ˆ ,n n S nSθ θ θΘ∇ = ∇ Θ + ∇  (A.14.3) 

and using the neutral relationship 
  
∇nSA = αΘ βΘ( )∇nΘ  we find  

  
∇nθ = θ̂Θ + αΘ βΘ⎡

⎣
⎤
⎦θ̂SA( )∇nΘ , (A.14.4) 

or  

  

∇nθ
∇nΘ

= θ̂Θ + αΘ βΘ⎡
⎣

⎤
⎦θ̂SA

. (A.14.5) 

The ratio, Eqn. (A.14.5), of the epineutral gradients of θ  and Θ  is shown in 
Figure A.14.1 at 0p = , indicating that the epineutral gradient of potential 
temperature is sometimes more that 1% different to that of Conservative 
Temperature.  This ratio n nθ∇ ∇ Θ  is only a weak function of pressure.   

 
Figure A.14.1.  Contours of ( )1 100%n nθ∇ ∇ Θ − ×  at 0p = , showing the 
percentage difference between the epineutral gradients of θ  and Θ .  The red 
dots are from the ocean atlas of Gouretski and Koltermann (2004) at 0p = .   
 
 

Keeping track of “heat” in the ocean; advection and diffusion of heat  
 
We have shown that the First Law of Thermodynamics is practically equivalent 
to the conservation equation for Conservative Temperature .Θ   We have 
emphasized that this means that the advection of “heat” is very accurately given 
as the advection of 0 .pc Θ   In this way 0

pc Θ  can be regarded as the “heat content” 
per unit mass of seawater.  The error involved with making this association is 
approximately 1% of the error in assuming that either 0

pc θ  or ( )A , , 0dbarpc S θ θ  
is the “heat content” per unit mass of seawater.    
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 A flux of heat across the sea surface at a sea pressure of 0 dbar is identical to 
the flux of potential enthalpy which is exactly equal to 0

pc  times the flux of 
Conservative Temperature Θ .  By contrast, the same heat flux across the sea 
surface changes potential temperature θ  in inverse proportion to ( )A, , 0pc S θ  
which varies by 5% at the sea surface, depending mainly on salinity.   

The First Law of Thermodynamics can be approximated as  

   
ρ cp

0 dΘ
d t

= cp
0 ρΘ( )t + cp

0∇⋅ ρΘu( ) ≈ −∇⋅FR −∇⋅FQ + ρε , (3.23.1) 

with an error in Θ  that is approximately one percent of the error incurred by 
treating either 0

pc θ  or ( )A, , 0pc S θ θ  as the “heat content” of seawater.  Equation 
(3.23.1) is exact at 0 dbar.   

Because the left-hand side of the First Law of Thermodynamics, Eqn. (3.23.1), 
can be written as density times the material derivative of 0

pc Θ  it follows that Θ  
can be treated as a conservative variable in the ocean and that 0

pc Θ  is 
transported by advection and mixed by turbulent epineutral and dianeutral 
diffusion as though it is the “heat content” of seawater.  For example, the 
advective meridional flux of “heat” is the area integral of 0 0

pvh vcρ ρ= Θ  (here v  
is the northward velocity).  

Some have argued that because enthalpy is unknown up to a linear function 
of salinity, it is only possible to talk of a flux of “heat” through an ocean section 
if the fluxes of mass and salt through the ocean section are both zero.  This 
opinion seems to be widely held, but it is incorrect.  The fact that 0

pc Θ  is 
unknowable up to a linear function of AS  does not affect the usefulness of 0h  or 
0
pc Θ  as measures of “heat content”:- the difference between the meridional 

fluxes of 0
pc Θ  across two latitudes is equal to the area-integrated air-sea and 

geothermal heat fluxes between these latitudes (after allowing for any unsteady 
accumulation of 0

pc Θ  in the volume), irrespective of whether there are non-zero 
fluxes of mass or salt across the sections.  This powerful result follows directly 
from the fact that 0

pc Θ  is taken to be a conservative variable, obeying the simple 
conservation statement Eqn. (3.23.1) (modulo the dissipation of kinetic energy, 
ρε ).  No one would doubt the sensibleness of calculating the meridional flux of 
a general passive tracer that obeyed such a conservation evolution equation, and 
the same applies to the flux of potential enthalpy.   
 
 

The intuitive explanation of why Conservative Temperature makes sense   

These lectures have largely demonstrated the benefits of potential enthalpy and 
Conservative Temperature from the viewpoint of conservation equations, but 
the benefits can also be deduced by the following parcel-based argument.   

1. First, the air-sea heat flux needs to be recognized as a flux of potential 
enthalpy which is exactly 0

pc  times the flux of Conservative 
Temperature.   

2. Second, the non-conservative production of Conservative Temperature 
at non-zero pressure needs to be calculated and shown to be much less 
than that for potential temperature.   

3. Third, note that the ocean circulation can be regarded as a series of 
adiabatic and isohaline movements during which Θ  is absolutely 
unchanged (because of its “potential” nature) followed by a series of 
turbulent mixing events during which Θ  is almost totally conserved.   

Hence it is clear that Θ  is the quantity that is advected and diffused in an almost 
conservative fashion and whose surface flux is exactly proportional to the air-sea 
heat flux.   


