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MATH5185
Lectures on Thermodynamics,
Semester 1, 2013, UNSW

Motivation for the first several lectures

As heat is exchanged between the atmosphere and the ocean, how can we keep
track of “heat” in the ocean?
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Figure 4. Contours of isobaric specific heat capacity ¢, of
seawater (inJ kg™' K™'), at p =0.
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Fig. 1.7 Specific heat of seawater c,,
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A given air-sea heat flux will affect the potential temperature 6 in the ocean at a
rate that depends on where you are on this §, -6 diagram. That is, the change

in 6 at the sea surface due to a Joule of heat being transferred from the
atmosphere into a kg of seawater, at constant salinity, is equal to the reciprocal
of ¢ (5,.6,0).

p

So what variable represents the “heat content per unit mass” of seawater? It
clearly is not simply potential temperature 6 . Nor is it the product 8¢, (S A,G,O)
(for at least two reasons, (1) because QCP(SA,O,O) # Jcp(SA,O,O) df and (2)
because the “heat content” of seawater also depends separately on salinity
(dhy = dh(S,.8,0) = c,(S,.6.0)d6 + hg (S,.6.0)dS, ).

And even if we were able to answer this question of “what is the “heat content”
per unit mass” of seawater at p =0, what do we do in the sub-surface ocean
where changes in pressure and specific volume v cause changes in the internal
energy u and enthalpy / of —Pdv and vdP respectively?

In short, we are asking the question

“what is “heat” in the ocean?”.

that is, what is the “heat content per unit mass” of seawater, applicable throughout
the ocean at all depths. We seek a “heat content per unit mass” variable whose
transport and turbulent mixing can be used to track the transport and the
turbulent mixing of the heat that enters the ocean across the air-sea boundary
and across the sea floor (the geothermal heat flux).
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The route to answering our question, “what is “hear” in the ocean?”

In order to answer this question we need to have a thorough understanding of
the First Law of Thermodynamics which in turn, can only be derived from the
Conservation Equation for Total Energy, which in turn relies on the
Fundamental Thermodynamic Relation, which in turn embodies the definition
of entropy and the Second Law of Thermodynamics. In the coming lectures we
will derive each of these three equations, but for now, here they are.

The Continuity Equation is

p,+V-(pu)=01. (A.21.2)

The Fundamental Thermodynamic Relation is

du+(p+PR)dv = dr—vdP = (T, +1)dn+ uds, |. (A7.1)

The Conservation Equation for Total Energy is

(pZ) +V-(puZ) = pdZ/dt = -V-([ p+P, |u)-V -F* -V F®

_ (B.15)
+V~(pv“s°V%[u-u]).
where the total energy Z per unit mass is defined as the sum of
the internal, kinetic and gravitational potential energies, that is,
EF=u+luu+d. (B.14)

The First Law of Thermodynamics is

dh  dP du dv dn ds,
——v— | = pl—=+(p+P)=| = p| (T, +1)=L+ u—2
p[dz de] p(dr (» O)dtj p((" Fa “dtj . (B.19)

= —V-F*-V-F? + pe

Nomenclature

h is specific enthalpy and u is specific internal energy, related by
h=u+Pv = u+( p+PO)v (“specific” means “per unit mass of

seawater”)

v is the specific volume

1M is specific entropy

U is the relative chemical potential of seawater
S

A
FR is the radiative flux of heat

is the Absolute Salinity of seawater

F? is the molecular flux of heat

€ is the rate of dissipation of kinetic energy

Equations numbers are from the TEOS-10 Manual,

IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
seawater — 2010: Calculation and wuse of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides
No. 56, UNESCO (English), 196 pp. Available from www.TEOS-10.org

Many of the topics that we cover are discussed in more detail in this TEOS-10
Manual. You should download it to your computer, and you should probably
print it out (even though it is more than 203 pages long).

A comprehensive list of nomenclature (Nomenclature. MATH5185.pdf) is being
distributed to the class.
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A brief introduction to Absolute Salinity and Practical Salinity
Practical Salinity S, has been measured and reported by oceanographers for >30

years (since it was defined in 1978). Practical Salinity is found from knowledge
of a seawater sample’s in situ temperature, pressure and electrical conductivity.

In the past 6 years it has become acknowledged that the composition of
seawater is not constant throughout the world ocean, and that the spatially
variable ratio of the constituents leads to horizontal gradients of density that are
too large to ignore.

This issue is an active area of research, but will not be a central part of this
course. We will deal with only one salinity variable, namely Absolute Salinity
S, , as defined by TEOS-10.

For completeness, we will make a few remarks comparing four salinity
variables
Practical Salinity, S,
Reference Salinity, S,
Absolute Salinity, S,
Preformed Salinity, S.

“Standard Seawater” has (reasonably well) known composition, but the
Practical Salinity S}, of Standard Seawater is not quite equal to the mass fraction
of dissolved material in seawater. Rather this mass fraction for Standard
Seawater is estimated to be the Reference Salinity, S} , of TEOS-10,

35.165 04 gkg™!
S, = [ng} S, . (2.4.1)

“Standard Seawater” is based on surface water from the North Atlantic, and
it contains no nutrients. Deeper in the ocean, and particularly in the deep
Southern Ocean and the deep North Pacific, the concentration of nutrients is
high (as a result of biogeochemical processes). Nutrients do not conduct
electricity very well (particularly silicic acid which is almost non-conductive)
and so an estimate of salinity based on a sample’s electrical conductivity
underestimates the mass fraction of dissolved material.

Given sufficient measurements of nutrients, we can now allow for their
presence on the mass fraction (and on the density) of seawater according to

(S,—5x)/(gkg™ =

. (A410)
(55.6 ATA +4.7 ADIC+38.9NO; +50.7 Si(OH), ) / (molkg™)

(TA is Total Alkalinity, DIC is Dissolved Inorganic Carbon, NOJ is nitrate and
Si(OH), is silicate, or silicic acid).

We normally do not have these measurements, so TEOS-10 also provides an
algorithm to evaluate Absolute Salinity from a spatial look-up table of the
Absolute Salinity Anomaly Ratio, R?,

S, = SR[1+ R® (long, lat, p)] . (A.5.10)

The Absolute Salinity S, is the correct salinity argument to be used to
evaluate density and other thermodynamic properties.
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The Absolute Salinity Anomaly, 65, =S, —S;, is the improvement in
today’s salinity estimates compared to those of the Practical Salinity era (1978 —
2009). This improvement is shown in the following two figures.

5S, (9 kg™") at p = 2000 dbar
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Figure 2 (a). Absolute Salinity Anomaly ¢S, at p =2000 dbar.
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Figure 2 (b). A vertical section of Absolute Salinity Anomaly 6§, along 180°E
in the Pacific Ocean.
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The horizontal gradients of density are responsible for driving the world’s deep
ocean currents (via the so-called “thermal wind” equation). The neglect of the
spatial variation of seawater composition (that is, the use of S}, instead of S, in
the evaluation of density) leads to non-trivial errors in the horizontal density
gradient. Globally, half the ocean below 1000 dbar is affected by more than 2%
(see Fig. A.5.1) while in the North Pacific, half the ocean below 1000 dbar is
affected by more than 10%.

x10°
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Figure A.5.1. The northward density gradient at constant pressure (the
horizontal axis) for data in the global ocean atlas of Gouretski and Koltermann
(2004) for p >1000dbar. The vertical axis is the magnitude of the difference
between evaluating the density gradient using S, versus Sy as the salinity
argument in the TEOS-10 expression for density.
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We now introduce Preformed Salinity S.,. Preformed Salinity S. is
designed to be as close as possible to being a conservative variable. That is, S, is
designed to be insensitive to the biogeochemical processes that affect the other
types of salinity to varying degrees. S. is formed by first estimating the
contribution of biogeochemical processes to §,, and then subtracting this
contribution from §, . Because it is designed to be a conservative oceanographic
variable, S. will find a prominent role in ocean modeling.

As a practical thing, the difference S, S, is taken to be 0.35(S N —SR) .

ROS, 0§

A

[ r=035 | 10 | >
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Figure A.4.1. Number line of salinity, illustrating the differences between
Preformed Salinity S., Reference Salinity S}, and Absolute Salinity S, for
seawater whose composition differs from that of Standard Seawater.

For seawater of Standard Composition, S, = S, = S, = (35.165 04 gkg*1/35)SP,
but when the seawater sample has undergone some biogeochemical activity, its
nutrient levels will be greater than zero, its conductivity will be increased a little
and its Absolute Salinity will be increased more. Specifically, if the increase in
Absolute Salinity due to the change in chemical composition, §, —S,, is say 1.35
on some scale, then only 0.35/1.35 (~26%) of this increase will be reflected in the
sample’s electrical conductivity and hence in its Practical Salinity and Reference
Salinity.

In this course we will deal exclusively with Absolute Salinity, and we will
also simplify things and consider Absolute Salinity to be a Conservative
variable. That is, we will assume that

ds
(pSA)t+V~(puSA) = pd—tA =-V-F® |, approximate (A.21.8a)

where F° is the molecular flux of salt. It is actually the Preformed Salinity S,
that obeys such a conservative evolution equation, namely
ds.

By making the assumption that Absolute Salinity obeys the conservative
equation (A.21.8a) rather than the real form of this equation, namely

=-V.F. (A.21.1)

(pS,),+V-(pus,) = pdditA =-V-F +pS» (A21.8)

we are ignoring S %A, the non-conservative source term. This non-conservative
source term is due to biogeochemical processes, for example, the
remineralization of biological material; the turning of particulate matter into
dissolved seasalt. For numerical integrations of an ocean model that exceed
about a century, this neglect will be significant, leading to errors in the “thermal
wind” 1.35 times as large as those described above. For shorter numerical
integrations, the errors will be small. For small time, the important thing is that
the expression for density is being called with Absolute Salinity as the salinity
argument, not Reference or Practical Salinity. Over the first few decades of
integration the errors will be small, and then they will build to be 1.35 times
those in Fig. A.5.1 above.
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Who was J. W. Gibbs?
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Josiah Willard Gibbs (February 11, 1839 — April 28, 1903) was
an American scientist who made important theoretical
contributions to physics, chemistry, and mathematics. His work
on the applications of thermodynamics was instrumental in
transforming physical chemistry into a rigorous deductive
science. Together with James Clerk Maxwell and Ludwig
Boltzmann, he created statistical mechanics (a term that he
coined), explaining the laws of thermodynamics as
consequences of the statistical properties of large ensembles of
particles. Gibbs also worked on the application of Maxwell's
equations to problems in physical optics. As a mathematician, he
invented modern vector calculus (independently of the British
scientist Oliver Heaviside, who carried out similar work during the
same period).

In 1863, Yale awarded Gibbs the first American doctorate in
engineering. After a three-year sojourn in Europe, Gibbs spent
the rest of his career at Yale, where he was professor of
mathematical physics from 1871 until his death. Working in
relative isolation, he became the earliest theoretical scientist in
the United States to earn an international reputation and was
praised by Albert Einstein as "the greatest mind in American
history".

In 1897 he was elected a Member of the National
Academy of Sciences in the USA, and as a foreign member of
the Royal Society of London, and in 1901 Gibbs received what
was then considered the highest honor awarded by the
international scientific community, the Copley Medal of the Royal
Society of London, "for his contributions to mathematical
physics". But Gibbs was so retiring he had the US naval attaché
in London collect the medal on his behalf.

Commentators and biographers have remarked on the
contrast between Gibbs's quiet, solitary life in turn of the century
New England and the great international impact of his ideas.
Though his work was almost entirely theoretical, the practical
value of Gibbs's contributions became evident with the
development of industrial chemistry during the first half of the
20th century. According to Robert A. Millikan, in pure science
Gibbs "did for statistical mechanics and for thermodynamics what
Laplace did for celestial mechanics and Maxwell did for
electrodynamics, namely, made his field a well-nigh finished
theoretical structure."

Maxwell was an admirer and collaborator of Gibbs, and
Maxwell's early death in 1879, at the age of 48, precluded further
collaboration between him and Gibbs. The joke later circulated
in New Haven that "only one man lived who could understand
Gibbs's papers. That was Maxwell, and now he is dead."

When Dutch physicist J. D. van der Waals received the 1910
Nobel Prize "for his work on the equation of state for gases and
liquids" he acknowledged the great influence of Gibbs's work on
that subject. Max Planck received the 1918 Nobel Prize for his
work on quantum mechanics, particularly his 1900 paper on
Planck's law for quantized black-body radiation. That work was
based largely on the thermodynamics of Kirchhoff, Boltzmann,
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and Gibbs. Planck declared that Gibbs's name "not only in
America but in the whole world will ever be reckoned among the
most renowned theoretical physicists of all times."

The “Gibbs Phenomenon” is another well-known example of
his influence; this being the sine integral showing the overshoot
and ringing of a Fourier Series approximation to a step function.
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Basic Thermodynamic Concepts: internal energy, enthalpy and Pd}V work
Consider a fluid in a piston arrangement shown below. The fluid receives an

amount of heat Q and mechanical work is done on the fluid at the rate W . The
internal energy of the fluid U, changes by the amount AU =Q + W .

AU =Q+W
Figure 1.7. The total change in the energy of
a system is the sum of the heat added to it and
the work done on it. | Q%

Internal energy u represents (1) the kinetic energy involved in the vibration
of molecules plus (2) the potential energy of chemical bonds and electrostatic
charges. For liquids, and especially for water, this second aspect to internal
energy is extremely important, while for a perfect gas, only the first part counts.
Understanding thermodynamics from the scale of molecular behaviour is the field
called “statistical thermodynamics” and we will not touch on this in this course.

The most common type of work W done on or by a fluid is the work done
by compression or expansion, as in the following figure. This is how a car
internal combustion engine extracts useful work from the high pressure gas that
results from igniting the fuel-air mixture in an engine cylinder.

Figure 1.8. When the pis-
ton moves inward, the vol-

Piston area = A

ume of the gas changes by —

£ & ang b _.i-=-— Force = F
AV (anegative amount) and
the work done on the gas
(assuming quasistatic com-

pression) is —PAV.

fe—
Ar

For infinitesimal changes we can write dU + PdV = 6Q. Defining
enthalpy H as H =U + PV our attempt at writing down “energy conservation”
so far can be written as

dH -VdP = 60 . (~B.1a)
To motivate enthalpy H consider how much energy is required to magically
create a blob of fluid out of nothing, and place it at its present location at
pressure P.

Figure 1.15. To create a rabbit out of nothing and place it on the table, the
magician must summon up not only the energy U of the rabbit, but also some
additional energy, equal to PV, to push the atmosphere out of the way to make
room. The total energy required is the enthalpy, /f = U + PV.
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Entropy and the Second Law of Thermodynamics

A “closed system”, such as the piston illustration on the previous page, is one
where there is exchange of heat with the environment, and there is mechanical
work done between the system and the environment, but there is no exchange of
mass of any species. That is, for seawater, a “closed system” is a seawater parcel
with fixed mass of both water and of salt, and having no exchange of water or
salt with the surrounding fluid.

We begin by repeating our progress so far with the conservation of energy for a
“closed system”, but now written in terms of “specific” variables, that is
variables that represent the amount of stuff per unit mass of seawater,

dh —vdP = dgq. (~B.1b)

For a “closed system” the Second Law of Thermodynamics states that
1. there is a state variable entropy n = n(S v ,P) whose infinitesimal

changes obey

dq

7 ’

2. and that irreversible processes (like diffusion and turbulent mixing)
always result in the production entropy.

dn = for a closed system (2nd_Law)

Note that dq itself is a complicated animal (which I passionately dislike). It is not
the divergence of a flux; for example the dissipation of turbulent kinetic energy is
part of 8¢ . This dissipation heats the fluid but it is not the divergence of a heat
flux. This nasty nature of dq is why it is written as 8¢ rather than dg. dq is not
a total differential and ¢ is not a state variable, thatis g # q(S o ,P).

We can combine Eqns. (~B.1b) and (2"_Law) to find
dh —vdP = Tdn for a closed system (Fundamental_Closed)

This is the Fundamental Thermodynamic Relation for a closed system; it applies
when there are no variations of Absolute Salinity (e.g. it applies to a lake). Itis a
differential relationship between three state variables, enthalpy, specific volume
and entropy.

The Fundamental Thermodynamic Relation (or Gibbs relation)

Now we will generalize this relationship to an “open system” where the system
exchanges not only heat and work energy with its environment, but it also
exchanges mass. That is, a seawater parcel that is an “open system” exchanges
both water and salt with its environment.

Consider a situation where we have a seawater parcel exchanging water
and salt with its environment at constant temperature and pressure. It is
simplest to assume that there is no change in the parcel’s total mass.
Specifically, envisage two seawater parcels that are in contact with each other,
having different Absolute Salinities but the same temperature and pressure. A
small part of each parcel is now exchanged with the other parcel, with the
amount exchanged in both directions having the same mass.

We now define the “system” as being one of these two seawater parcels. If
the system were closed we would have the relation d# —vdP = Tdn but now
the change in the seawater sample’s enthalpy and entropy must incorporate the
change in the Absolute Salinity dS, . By Taylor series expansion, the changes in
enthalpy and entropy are related to those of the corresponding closed system by
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dh = dpeosd 4 O s, , (dh)
Alr p
close a
dn = dn d+% ds, . (dn)
Alr p

We know that dr* —vdP = Tdn“**® and these three equations can be
combined to find

dh—vdp = Tdn + | 2H 790 ds, . (dh - dn)
0S|, , 95,

This is the Fundamental Thermodynamic Relation. We can write it in more
familiar nomenclature once we have defined the Gibbs function (also called
“free enthalpy” and sometimes “free energy”) by

g(S,.T,P)=g=h-Tn =u+Pv-Tn|. (definition_of_g)

We also use the symbol u for the relative chemical potential of seawater defined
as the partial derivative of the Gibbs function with respect to Absolute Salinity,

_ dg
H=5s

Alr,p

(or u= gs, ). (rel chem pot)

This gives the usual form of the Fundamental Thermodynamic Relation (FTR)

du+(p+PR)dv = dh—vdP = (T,+t)dn+ uds, |. (FTR)

Here we have written the Absolute Pressure P as p + F, where F, = 101325 Pa
is pressure of one standard atmosphere and p is the “sea pressure”, and we
have written the Absolute Temperature T = T, +¢ as the sum of the Celsius
zero point T, = 273.15 K and the temperature ¢ in degrees Celsius.

In Tutorial class you will be asked to prove that (using g = g(S T ,P) )

_on

=-g., = and = —
n=-g, v=g ¢ =37 )
A

=—(7;)+t)gTT . (n,vand c,)
,P
The Gibbs function is a thermodynamic potential, from which all thermodynamic
properties can be found by simple operations such as differentiation.

The alternative name of “free enthalpy” comes from considering again the
amount of energy required to create our seawater parcel out of nothing. The
total amount of energy required per unit mass is & but some of this energy,
namely 77, can be extracted from the environment if the parcel is created
slowly enough so it is always at the temperature 7 of the environment.

Figure 5.1. To create a rabbit out of nothing and place it on the table, the
magician nced not summon up the entire enthalpy, #H = U/ 4+ PV, Some energy,
equal to 7S, can flow in spontaneously as heat; the magician must provide only

the difference, &G = H TS, as work.
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Review of Therm0_Lecture01_09April2013

We learnt that the Practical Salinity variable, defined in 1980, is essentially a
measure of the electrical conductivity seawater, but is blind to spatial variations
of the concentrations of nutrients which affect the density and the electrical
conductivity of a seawater sample differently to how the major dissolved ions
affect density and conductivity.

This has now been addressed, and beginning in 2010 oceanographers have a
new variable, Absolute Salinity, S,, which better represents thermodynamic
quantities such as density. This recent definition of seawater salinity and the
Gibbs function of seawater goes by the name of the

International Thermodynamic Equation Of Seawater — 2010,
or TEOS-10, see www.TEOS-10.org.

We derived the Gibbs Relation, or Fundamental Thermodynamic Relation

du+(p+PR)dv = dh—vdP = (T,+t)dn+ uds, |. (FTR)

which is a relationship between the total differentials of several state variables,
u,v,h,n and u.

We defined the Gibbs function in terms of enthalpy and entropy by

g(S,.T,P)=g=h-Tn =u+Pv-Tn|. (definition_of_g)

and we stated that all the thermodynamic properties of a fluid can be derived
from this one “parent” function, g(S A p), by simple mathematical operations
such as differentiation.

As for understanding the difference between enthalpy #, internal energy u
and the Gibbs function g we learnt that enthalpy is a better estimate of the total
amount of thermodynamic energy in a fluid parcel, recognizing that the parcel’s
creation involved pushing its environment out of the way (because it occupies
volume v (per unit mass) at ambient Absolute Pressure P). The Gibbs function
g = h—1Tn is the part of enthalpy % that is “free” or “available”. The part 7n
of & is not available “for sale” on the energy market, because it is not
“available” to do any useful work. Hence the Gibbs function is sometimes called
“free enthalpy” or “free energy”. The adjective “available” makes sense if you
are selling the energy of the seawater parcel to someone who wants to use the
energy of the parcel to do some useful work in say an energy cycle machine.
The adjective “free” makes sense if you consider yourself to be the magician,
creating the seawater parcel out of nothing, and getting a free ride from the
environment to the extent 71).

Warning on Nomenclature. For the state variables such as u, v, i, we
use lower case letters when they are per unit mass (“specific” variables), and
upper case when they represent the total amount of that quantity in a mass of
fluid of mass M . But the use of upper case P and T is different. These upper
case letters stand for Absolute Pressure (in Pa =Nm™>) and Absolute
Temperature (K ), while the lower case letters p and ¢ are for p = P— F, (often
in units of dbar)and ¢ =7 — T (in degrees Celsius).

F, = 101 325 Pa (=10.1325 dbar), and

T, = 273.15K.
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A rough derivation of the First Law of Thermodynamics for a pure
substance

For a pure fluid in which there is no dissolved material (such as pure water with
zero Absolute Salinity) the derivation of the First Law of Thermodynamics
usually starts with our Eqn. (~B.1b), namely d# — vdP = &g, written in terms of
material derivatives as
dh  dP 0q

p( i v ” j =% for pure water (B.1)
Now we have to guess what the nasty, obnoxious, odious, §¢/d¢ term might be.
We know that there is such a thing as the molecular flux of heat FQ=— pcka vr
(where k" is the molecular diffusivity of temperature) whose (negative)
divergence one might imagine should be part of §¢/dt. We know there is such
a thing as the radiative heat flux F® whose (negative) divergence should be part
of 8q/dt. We also know that when the kinetic energy of turbulent motions is
dissipated by the molecular viscosity, energy changes from its kinetic form to its
“heat” form”, and the fluid warms up as a result. So we do the sensible thing
and add this term to 8¢/d¢. This term is written as pe where ¢ is the rate of
dissipation of kinetic energy per unit mass of fluid. After this educated
guesswork we have the First Law of Thermodynamics for a pure substance,

p(% - vi—fj = % = —-V.F* -V.F? + pe. for pure water (B.2)
So far so good; this educated guesswork has allowed us to arrive at a correct

result in this simple case for a fluid that is a pure substance.

But we have actually assumed that the molecular flux of heat appears on the
right-hand side as V~( pcka \%%4 ) . We have no right to assume that. We cannot
rule out the form pcka V-VT for example, for this term. So, what will turn out
to be the key feature of Eqn. (B.2), namely that apart from pe the other terms on
the right-hand side appear as flux divergences, we have actually assumed, not
proven. This is not satisfactory and we must do better.

A false start at deriving the First Law of Thermodynamics for seawater

Now consider seawater in which the Absolute Salinity and its gradients are non-
zero. The same traditional discussion of the First Law of Thermodynamics
involving the “heating” and the application of compression work (as in Eqn.
(~B.1a) above), and now the change of salinity to a fluid parcel shows that the
change of enthalpy of the fluid parcel is given by (u — I:T0 +t],uT being hSA‘T P)

dH - VAP = 60 + (u — [Ty +t)pty )M dS,,, (B.3)

where M is the mass of the fluid parcel. When written in terms of the specific
enthalpy #, and JQ per unit volume (dq), this equation becomes (using
pdS, /dt = -V -F®)

Does this help with the task of constructing an expression for the right-hand side
of (B.4) in terms of the dissipation of mechanical energy and the molecular,
radiative and boundary fluxes of “heat” and salt? If the “heating” term Jg/ds in
Eqn. (B.4) were the same as in the pure water case Eqn. (B.2) then we would
have successfully derived the First Law of Thermodynamics in a saline ocean via
this route. However, we will now show that dg/d¢ in Eqn. (B.4) is not the same
as that in the pure water case, Eqn. (B.2).
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Substituting the expression for dg/d¢ from (B.2) into the right-hand side of
(B.4) we find that the right-hand side is not the same as the First Law of
Thermodynamics (B.19) which we derive below (this comparison involves using
the correct expression (B.27)) for the molecular flux FQ). The two versions of
the First Law of Thermodynamics are different by

B g

FS-V(u-[Ty+]u,) + V.[mﬁ}. (B.5)
This inconsistency means that the rather poorly defined “rate of heating” dq/dt
must be different in the saline case than in the pure water situation by this
amount. We know of no way of justifying this difference, so we conclude that
any attempt to derive the First Law of Thermodynamics via this route involving
the loosely defined “rate of heating” dg/d¢ is doomed to failure. This is not to
say that Eqn. (B.4) is incorrect. Rather, the point is that it is not useful, since
0q/dt cannot be deduced directly by physical reasoning (for example, how
would one guess how the Dufour effect contributes to dqg/dt?)

In particular, the expression in (B.5) is not the divergence of a flux and so
when two parcels are mixed at constant pressure, enthalpy will not be
conserved (see later). We were able to correctly guess the form of the right-hand
side of the First Law of Thermodynamics in the case of pure substance, but in
the presence of salinity gradients, our intuition fails us.
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The proper derivation of the First Law of Thermodynamics for seawater

Since there is no way of deriving the First Law of Thermodynamics that
involves the “heating” term Jg/d¢, we follow Landau and Lifshitz (1959) and de
Groot and Mazur (1984) and derive the First Law via the following circuitous
route. Rather than attempting to guess the form of the molecular forcing terms
in this equation directly, we first construct a conservation equation for the total
energy, being the sum of the kinetic, gravitational potential and internal
energies. It is in this equation that we insert the molecular fluxes of heat and
momentum and the radiative and boundary fluxes of heat. We know that the
evolution equation for total energy must have the conservative form, and so we
insist that the forcing terms in this equation appear as the divergence of fluxes.

Having formed the conservation equation for total energy, the known
evolution equations for two of the types of energy, namely the kinetic and
gravitational potential energies, are subtracted, leaving a prognostic equation for
the internal energy, that is, the First Law of Thermodynamics.

We start by developing the evolution equations for gravitational potential
energy and for kinetic energy (via the momentum equation). The sum of these
two evolution equations is noted. We then step back a little and consider the
simplified situation where there are no molecular fluxes of heat and salt and no
effects of viscosity and no radiative or boundary heat fluxes. In this “adiabatic”
limit we are able to develop the conservation equation for total energy, being the
sum of internal energy, kinetic energy and gravitational potential energy. To
this equation we introduce the molecular, radiative and boundary flux
divergences. Finally the First Law of Thermodynamics is found by subtracting
from this total energy equation the conservation statement for the sum of the
kinetic and gravitational potential energies.

We start by writing the Fundamental Thermodynamic Relation in terms of
material derivatives following the instantaneous motion of a fluid parcel

d/dt=0/3  +u-V,

du ( O)Q dh 1dP _ (T()H)dn di

—+|p+P
PPl T pde

. (B.6)

Gravitational potential energy

If the gravitational acceleration is taken to be constant the gravitational potential
energy per unit mass with respect to the height z = 0 is simply gz. Allowing
the gravitational acceleration to be a function of height means that the
gravitational potential energy per unit mass ® with respect to some fixed height
z, is defined by

D= '[g(z') dz’. (B.7)
20
At a fixed location in space @ is independent of time while its spatial gradient is
given by V@ =gk where k is the unit vector pointing upwards in the vertical
direction. The evolution equation for @ is then readily constructed as

(p0),+ V-(p0u) = p<2 = paw, (B.9)

where w is the vertical component of the three-dimensional velocity, that is
w=u-k. (Clearly in this section g is the gravitational acceleration, not the
Gibbs function). Note that this local balance equation for gravitational potential
energy is not in the form (A.8.1) required of a conservative variable since the
right-hand side of (B.8) is not minus the divergence of a flux.



MATHS5185 Thermodynamics Lectures, S1, 2013 18

Momentum evolution equation

The momentum evolution equation is derived in many textbooks including
Landau and Lifshitz (1959), Batchelor (1970), Gill (1982) and Griffies (2004). The
molecular viscosity appears in the exact momentum evolution equation in the
rather complicated expressions appearing in equations (3.3.11) and (3.3.12) of
Batchelor (1970). We ignore the term that depends on the product of the
kinematic viscosity v'*° and the velocity divergence V-u (following Gill

(1982)), so arriving at

p((ii—l; + fkxpu = =VP —pgk +V~(vaiS°VAu), (B.9)

where f is the Coriolis frequency, v'*° is the kinematic viscosity and Vu is

twice the symmetrized velocity shear, Vu= (aui / x + du, / axl.). Under the same
assumption as above of ignoring the velocity divergence, the pressure p that
enters (B.9) can be shown to be equivalent to the equilibrium pressure that is
rightly the pressure argument of the equation of state (Batchelor (1970)). The
centripetal acceleration associated with the coordinate system being on a
rotating planet can be taken into account by an addition to the gravitational
acceleration in (B.9) (Griffies (2004)).

Kinetic energy evolution equation

The kinetic energy evolution equation is found by taking the scalar product of
Eqn. (B.9) with u giving

(p%u-u)t +V-(putfu-u])
= pd(%u-u)/dt = —u-VP —pgw+V'(vaiSCV%[u-u])—pg,

where the dissipation of mechanical energy ¢ is the positive definite quantity

(B.10)

= %vvi“(ﬂ-ﬂ). (B.11)

Evolution equation for the sum of kinetic and gravitational potential
energies

1

The evolution equation for total mechanical energy -

adding Eqns. (B8) and (B10) giving
(p[%u-u + d)])t + V-(pu[%u-u + d)])

=pd(%u~u+ Q)/dt =-u-VP + V-(vaiSCV%I:u-u])— PE.

u-u +® is found by

(B.12)

Notice that the term pgw which has the role of exchanging energy between the

kinetic and gravitational potential forms has cancelled when these two evolution
equations were added.

Conservation equation for total energy T in the absence of molecular
fluxes

In the absence of molecular or other irreversible processes (such as radiation of
heat), both the specific entropy 7 and the Absolute salinity S, of each fluid
parcel is constant following the fluid motion so that the right-hand side of (B.6)
is zero and the material derivative of internal energy satisfies
du/dt = —(p+PF,))dv/dt so that the internal energy changes only as a result of the
work done in compressing the fluid parcel. Realizing that v=p~' and using the
continuity Eqn. (A.8.1) in the form dp/dt + pV-u =0, du/dzcan be expressed in
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this situation of no molecular, radiative or boundary fluxes as
du/dt =-p~' (p+F)V-u. Adding this equation to the inviscid, non-dissipative
version of (B.12) gives

(PE), +V-(puE ) = pdE Jdt = =V-([p+R]u), nomolecular fluxes (B.13)
where the total energy

F=u+luu+® (B.14)

is defined as the sum of the internal, kinetic and gravitational potential energies.

Note that this is the first variable that we have considered so far which has
the right-hand side being the divergence of a flux. This was not true of the
gravitational potential energy, Eqn. (B.8), it was not rue of the kinetic energy
equation, (B.10), and it was not true of the sum of the kinetic and gravitational
potential energies, Eqn. (B.12). Note that the divergence-as-right-hand-side is
not true of (B.8). (B.10) and (B.12), even for flows without molecular fluxes. That
fact that we have now found a variable, Z, whose evolution equation (B.13) has
a right-hand-side which is the divergence of something in this adiabatic
isohaline limit is extremely important. For example, if we substitute enthalpy #
for internal energy u in the quantity Z', we lose this property.

Conservation equation for total energy in the presence of molecular
fluxes

Now, following section 49 Landau and Lifshitz (1959) we need to consider how
molecular fluxes of heat and salt and the radiation of heat will alter the
simplified conservation equation of total energy (B.13). The molecular viscosity
gives rise to a stress in the fluid represented by the tensor ¢, and the interior
flux of energy due to this stress tensor is u-6 so that there needs to be the
additional term -V-(u-o) added to the right-hand side of the total energy
conservation equation. Consistent with Eqn. (B.9) above we take the stress
tensor to be 6=—pv"*Vu so that the extra term is V-(vaiSCV%[wu]). Also
heat fluxes at the ocean boundaries and by radiation F® and molecular
diffusion FQ necessitate the additional terms —V-F® —V-FQ. At this stage we
have not specified the form of the molecular diffusive flux of heat FQ in terms of
gradients of temperature and Absolute Salinity; this is done below in Eqn. (B.24).
The total energy conservation equation in the presence of molecular, radiative
and boundary fluxes is

(pZ) +V-(puZ) = pdZ/dt = -V-([ p+P, |u)-V -F* -V F®
+V~(vais°V%[u-u]).
The right-hand side of the £ conservation equation (B.15) is the divergence of a
flux, ensuring that total energy £ is both a “conservative” variable and an
“isobaric conservative” variable (see appendix A.8 for the definition of these
characteristics).

(B.15)

Two alternative forms of the conservation equation for total energy

Another way of expressing the total energy equation (B.15) is to write it in a
quasi-divergence form, with the temporal derivative being of
pE = p(u+%u-u+d>) while the divergence part of the left-hand side is based
on a different quantity, namely the Bernoulli functionB = h+Ju-u+®. This
form of the total energy equation is

(pf)t +V-(puB) =-V - F*-V.F? +V-(vaiS°V%[ll~u]) . (B.16)

In an ocean modelling context, it is rather strange to contemplate the energy
variable that is advected through the face of a model grid, B , to be different to
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the energy variable that is changed in the grid cell, Z . Hence this form of the
total energy equation has not proved popular.

A third way of expressing the total energy equation (B.15) is to write the left-
hand side in terms of only the Bernoulli function B = Z+1u-u+® so that the
prognostic equation for the Bernoulli function is

pB) +V-(puB)=pdB/dt =P -V -F* -V.FC+V . ([pv"*Vilu-u|). (B.17)
p ‘ 2

When the flow is steady, and in particular, when the pressure field is time
invariant at every point in space, this Bernoulli form of the total energy equation
has the desirable property that B is conserved following the fluid motion in the
absence of radiative, boundary and molecular fluxes. Subject to this steady-state
assumption, the Bernoulli function B possesses the “potential” property. The
negative aspect of this B evolution equation (B.17) is that in the more general
situation where the flow is unsteady, the presence of the P, term means that the
Bernoulli function does not behave as a conservative variable because the right-
hand side of (B.17) is not the divergence of a flux. In this general non-steady
situation B is “isobaric conservative” but is not a “conservative” variable nor
does it posses the “potential” property.

Noting that the total energy Z is related to the Bernoulli function by
E =B-(p+h) / p and continuing to take the whole ocean to be in a steady
state so that B has the “potential” property, it is clear that Z does not have the
“potential” property in this situation. That is, if a seawater parcel moves from
say 2000 dbar to O dbar without exchange of material or heat with its
surroundings and with P =0 everywhere, then B remains constant while the
parcel’s total energy Z changes by the difference in the quantity — (p+£)) / p
between the two locations. Hence we conclude that even in a steady ocean F
does not possess the “potential” property.

When the viscous production term V~(pv"is°V%[u~u]) in the above
equations is integrated over the ocean volume, the contribution from the sea
surface is the power input by the wind stress 7, namely the area integral of

7" where u"™ is the surface velocity of the ocean.

Obtaining the First Law of Thermodynamics by subtraction

The evolution equation (B.12) for the sum of kinetic and gravitational potential
energies is now subtracted from the total energy conservation equation (B.15)
giving

(pu)t+V~(puu) = pdu/dt = —(p-i—Po)V'u ~V-FR? —V-FQ +pe. (B.18)
Using the continuity equation in the form pdv/df =V-u and the Fundamental
Thermodynamic Relation (B.6), this equation can be written as

dh  dP du dv dn ds,
——v— | = pl—=+(p+P)=| = p| (T, +1)=L+ u—2
p(dz de] p(dr (» O)dtj p((" Fa “dtJ . (B.19)

= —-V-F*-V-F?+ pe

which is the First Law of Thermodynamics.

The corresponding evolution equation for Absolute Salinity is (Eqn.
(A.21.8))
dSA S N
p=t = (pS,), + V:(puS,) = ~V-F 4 pS™, (A21.8)
where F® is the molecular flux of salt and p S %A is the non-conservative source
of Absolute Salinity due to the remineralization of particulate matter which we
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are going to ignore in this course. Hence, in this course we take the salt
evolution equation to be

ds
(pSA)t+V~(puSA) = pd—tA =-V-F* |, approximate (A.21.8a)

For many purposes in oceanography the exact dependence of the molecular
fluxes of heat and salt on the gradients of Absolute Salinity, temperature and
pressure is unimportant, nevertheless, Eqns. (B.23) - (B.27) below list these
molecular fluxes in terms of the spatial gradients of these quantities.

At first sight Eqn. (B.19) has little to recommend it; there is a non-
conservative source term pe on the right-hand side and even more worryingly,
the left-hand side is not p times the material derivative of any quantity as is
required of a conservation equation of a conservative variable. It is this aspect of
the left-hand side of the First Law of Thermodynamics, namely the presence of
the —dP/ds term that scared oceanographers and held up thermodynamic
progress for a century.

In summary, the approach used here to develop the First Law of
Thermodynamics seems rather convoluted in that the conservation equation for
total energy is first formed, and then the evolution equations for kinetic and
gravitational potential energies are subtracted. Moreover, the molecular,
radiative and boundary fluxes were included into the total energy conservation
equation as separate deliberate flux divergences, rather than coming from an
underlying basic conservation equation. This approach is adopted for the
following reasons. First this approach ensures that the molecular, radiative and
boundary fluxes do enter the total energy conservation equation (B.15) as the
divergence of fluxes so that the total energy £ = u + Lu-u+ @ is guaranteed to
be a conservative variable. This is essential. Second, it is rather unclear how one
would otherwise arrive at the molecular fluxes of heat and salt on the right-hand
side of the First Law of Thermodynamics since the direct approach which was
attempted involved the poorly defined (and obnoxious) “rate of heating” dq/dt
and did not lead us to the First Law.

Expressions for the molecular fluxes of heat and salt

The molecular fluxes of salt and heat, F° and F%, are now written in the
general matrix form in terms of the thermodynamic “forces” V(—u/ T ) and
V(l/ T ) as

FS = AV(-u/T) + BV(1/T), (B.21)

FQ = BV (-u/T) + CV(1/T), (B.22)

where 4, B and C are three independent coefficients. The equality of the off-
diagonal diffusion coefficients, B, results from the Onsager (1931a,b) reciprocity
relation. =~ When these fluxes are substituted into the First Law of
Thermodynamics Eqn. (B.19) and this is written as an evolution equation for
entropy, the Second Law constraint that the entropy production must be
positive requires that 4 > 0 and that C > B’ / A. The part of the salt flux that is
proportional to -VS, is traditionally written as ~pksVS , implying that
A = pkST / K, - The molecular fluxes of salt and heat, F* and F?, can now be
written in terms of the gradients of Absolute Salinity, temperature and pressure
in the convenient forms
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S
F = —pk®| vs, + Foyp| o [PET(R] LB \gp (B.23)
N ug \T), 1
2 Bu Bu
FQ - _Lz c-Blyr & — A FS = —pe k'VT + —AF5, (B.24)
T A pk°T i pk=T

where the fact that C > Bz/ A4 has been used to write the regular diffusion of
heat down the temperature gradient as — pcka VT where k is the positive
molecular diffusivity of temperature. These expressions involve the (strictly
positive) molecular diffusivities of temperature and salinity (<’ and &°) and
the single cross-diffusion parameter B. The other parameters in these
equations follow directly from the Gibbs function of seawater.

It is common to introduce a “reduced heat flux” by reducing the molecular
flux of heat by ah/aSA‘T FS = (/,L - T,LLT)FS , being the flux of enthalpy due to
the molecular flux of salt. This prompts the introduction of a revised cross-
diffusion coefficient defined by

S3
B =B+ ”"—T(E] ) (B.25)
Bs, \T);

and in terms of this cross-diffusion coefficient Eqns. (B.23) and (B.24) can be
written as

F - —ka{VSA+&VP] - fZVT, (B.26)
SA
and
Bu
FQ— (u—Tw,)FS = —pc k' VT + — A FS
(u=Tuy) pe, T
i (B.27)
Bug u
= —pc K'VT — —A VS, + =LVP |,
P T s
A

where K', defined by pcpKT = pcka +B’2/ (AT 2), is a revised molecular
diffusivity of temperature.

The term in (B.26) that is proportional to the pressure gradient VP
represents “barodiffusion” as it causes a flux of salt down the gradient of
pressure. The last term in (B.26) is a flux of salt due to the gradient of in situ
temperature and is called the Soret effect, while the last term in the second line
of Eqn. (B.27) is called the Dufour effect.

If the ocean were in thermodynamic equilibrium, its temperature would be
the same everywhere, as would the chemical potentials of water and of each
dissolved species; see Eqns. (B.21) and (B.22). Such a situation with FQ = F* =0
would have entropy and the concentrations of each species being functions of
pressure. Turbulent mixing acts in the complementary direction, tending to
homogenize the concentration of each species and to make entropy constant, but
in the process causing gradients in temperature and the chemical potentials as
functions of pressure. That is, turbulent mixing acts to maintain a non-
equilibrium state. This difference between the roles of molecular versus
turbulent mixing results from the symmetry breaking role of the gravity field;
for example, in a laboratory without gravity, turbulent and molecular mixing
would have indistinguishable effects.



