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- Metrological challenges for measurements of key climatological observables.  
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- Metrological challenges for measurements of key climatological observables.  

Part 4: Atmospheric relative humidity 
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Appendix A: Chemical potentials and reference states 

 
Chemical potentials were defined by Gibbs (1873) for the thermodynamic description of equilibria of 
multi-component and/or heterogeneous systems, and are closely linked to activity coefficients and 
fugacities. The statement of Kittel (1971) that "a vague discomfort at the thought of the chemical 
potential is still characteristic of a physics education" and that "this intellectual gap is due to the 
obscurity of the writings of J. Willard Gibbs who discovered and understood the matter 100 years 
ago" is still true even more than four decades later. In this Appendix, emphasis is put on some 
freedom available in the definition of chemical potentials, an aspect that is often only marginally 
touched in textbooks, but which is relevant here for the question of whether a certain mathematical 
expression in terms of chemical potentials may represent a measurable quantity or not. 

The Gibbs energy, G, of a mixture of N substances with the composition X = (X1, .., XN) can be written 
in the form 
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Typically, the extensive variables Xi may be the mass, the particle number or the mole number of 
constituent i. Conjugate to the chosen Xi, the partial Gibbs energies, µi, are the chemical potentials,  
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For theoretical reasons, at constant temperature and pressure, the set of chemical potentials of any 
given mixture always fulfils the Gibbs-Duhem differential equation, 
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If X and X' are two alternative sets of composition variables describing the same mixture, their 
conjugate chemical potentials are converted into each other by the linear transformation, 
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While this transformation is used to convert between mass-based and mole-based chemical 
potentials, it is commonly not applied if mass fractions or mole fractions are introduced as 
composition variables. For example, if Xn = MW is the mass of water in seawater, and Xi = Mi are the 
masses of the solutes, i = 1, …, N − 1, the related mass-based chemical potential of water in seawater 
follows from (A.2) to be 
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where MGg /  is the specific Gibbs energy of seawater, 
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 is the mass of the sample.  
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Similarly, if XN = nW  is the number of moles of water vapour in a sample of humid air,  and Xi = ni  are 
the mole numbers of the dry-air constituents, i = 1, …, N − 1, the mole-based chemical potential of 
water in humid air is computed from (A.2) to give 
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where   nGg /m   is the molar Gibbs energy of humid air, x = nW / n the mole fraction of water 

vapour, and 



N

i

iXn
1

 is the number of moles contained in the sample. 

In addition to the dependence of chemical potentials on the choice of the concentration variables, 
they are also arbitrary with respect to a linear function of temperature. If µi is the chemical potential 
of a substance i, the modified function, 

     TBApTpT iiii  ,,,,' XX  ,       (A.7) 

constitutes an equivalent chemical potential of that substance whatever constant values we may 
choose for Ai and Bi, provided that mutually consistent values are chosen for the same substance in 
each phase or mixture in the given system. The two undefined constants represent the partial 
absolute energy and the partial absolute entropy of the substance, which cannot be measured 
experimentally. Consequently, individual chemical potentials cannot be measured either. 

A convenient way to fix those arbitrary constants is the formulation of reference-state conditions 
(Hamer and Wu, 1972). For water, in 1956 at the 5th ICPS1 it was decided to set the entropy and the 
internal energy of liquid water to zero at the liquid-solid-gas triple point (Wagner and Pruß, 2002). 
Consistency requires that the same choice must also be applied for ice, for water in seawater and for 
water vapour in humid air (Feistel et al., 2008). Similar reference-state conditions were specified in 
TEOS-10 for sea salt and for dry air (IOC et al., 2010), but not separately for each chemical 
constituent of those mixtures. Because the composition of dissolved air in water deviates from that 
of dry air in the gas phase and depends on temperature and pressure, the current TEOS-10 
specifications will be insufficient if the dissolution of air is no longer neglected. In general it is 
recommended that reference states be chosen at conditions where the correlation equations used 
are known with high accuracy, rather than at extreme states such as at zero absolute temperature. 

The mole-based chemical potential of a solute at infinite (ideal) dilution, id

i , takes the asymptotic 

form (Planck, 1888; Guggenheim, 1949; Falkenhagen et al., 1971; Prausnitz et al., 1999)  

    iii xRTpTpT ln,,, 0id   X ,        (A.8) 

where xi is the mole fraction of the solute, and the reference chemical potential 0

i is defined by the 

mathematical limit,  
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Note that the arbitrary constants in the definition of chemical potentials remain in the limit of infinite 

dilution, so that the difference    pTpT ii ,,,, id XX    is independent of the free constants in (A.7). 

 

                                                 
1 ICPS: International Conference on the Properties of Steam, held by a forerunner of IAPWS, www.iapws.org  

http://www.iapws.org/
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Appendix B: Definition of activity, activity coefficient and osmotic coefficient 

 
Activities, instead of composition variables, were introduced by Lewis (1907) for the empirical 
description of solutions whose behaviour deviates from ideality. 

The absolute activity, λi, of a substance i in a mixture is defined by (Guggenheim, 1949; Harrison, 
1965; Kittel, 1969) 
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where µi is the mole-based chemical potential of the substance. As an example, in TEOS-10 (IOC et 
al., 2010) the activity of water in seawater is defined by eq. (B.1).  

For simplicity, a single solute is considered in the following. Because of the ambiguity (A.7) of the 
chemical potential, physically equivalent absolute activities, λi and λi’, may differ by an arbitrary 
factor of the form 
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Avoiding the ambiguity of the absolute activity, relative activities (or simply activities) can be defined 
by 
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where µi
0 is given by eq. (A.9), or by an alternative convention specifying some reference state that is 

assigned a relative activity of ai = 1. Writing eq. (B.3) in the form 

    iiii aRTpTpTx ln,,, 0
  ,        (B.4) 

comparison with eq. (A.8) shows that for a concentrated solution the activity, ai, formally takes over 
the role of the mole fraction, xi, of a dilute solution.  

Note that, up to a constant factor, the pH of a solution (see Part 3 of the companion articles) equals 

the excess chemical potential,    RTii /0
  , of the hydrogen ion (Himmel et al., 2010), 
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To quantify the deviation of the activity from the mole fraction, the activity coefficient, γi, is used in 
the form 

    pTxxpTxa iiiii ,,,,  ,        (B.6) 

with the limiting property 
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The activity coefficient (B.6) is sometimes termed “rational” in contrast to measured practical activity 

coefficients,  m

i , defined by (Lewis and Randall, 1921; Falkenhagen et al., 1971; Hamer and Wu, 

1972) 
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where mi is the molality of the solute. The molar activity,  m

ia , has the limiting property 
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Since the molar activity is not dimensionless, eq. (B.4) is replaced by 
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where om  is an arbitrary constant value, usually chosen as a standard-state molality of 
1o kgmol1 m (Covington et al., 1985). Writing eq. (B.10) more conveniently, a reduced practical 

activity “referenced to Henry’s law” is defined by (McGlashan, 1971; Buck et al., 2002; p. 59 in IUPAC, 
2007), 
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where  m

ia  is given by eq. (B.8) and 1o kgmol1 m . This reduced practical activity has the limiting 

property 
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Experimentally, activity coefficients of solutes may be determined from their effects on colligative 
properties of the solution, such as the related lowering of the vapour pressure or of the freezing 
point. Those properties are described by the difference between the chemical potential of the 
solvent (e.g., water) in the solution, µW(mi), and that of the pure solvent, µW(0), as a function of the 

solute molality, mi, expressed by means of the osmotic coefficient,  im , 

      iii mRTmm   0WW ,        (B.13) 

which was introduced by Bjerrum (1918). 

Making use of the definitions (B.10) and (B.13), the Gibbs-Duhem equation (A.3) relates the osmotic 
coefficient to the solute’s activity coefficient, γi

(m), by the Bjerrum differential equation (Bjerrum, 
1919; Lewis and Randall, 1961; Millero and Leung, 1976; Blandamer et al., 2005; Feistel and Marion, 
2007), 
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If  im  is determined experimentally, the solution of this equation provides   i
m

i m  only up to an 

arbitrary integration constant that may be normalised by the condition (B.9).  Note that eq. (B.14) is 
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the form (Feistel and Marion, 2007), 
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The function  im  may possess an arbitrary constant offset and is related to the excess Gibbs free 

energy of the solution per mass of solvent (Friedman, 1972; Hamer and Wu, 1972; Prausnitz et al., 

1999), RTmG iex . 

If the solute is a mixture itself, the Bjerrum relation (B.14) applies to the mean activity coefficient, 

    
i
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ii
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ln ,         (B.16) 

where the sum is extended over all constituents of the solute,  imm  is the total molality, and 

im  and  m

i , respectively, are the molalities and the activity coefficients of the individual solutes. In 

such calculations, it is important to remember that for example the “total molality” of binary 
symmetric electrolytes is actually twice as large as the numerical value typically reported as the 
“molality” of the solution. This is because it is (another) convention to count only dissolved 
molecules rather than dissociated ions. 

In the case of electrolyte solutions, additional ambiguities are encountered. First, the molality of 
multi-component, multi-valent electrolyte solutions is ambiguous. The solution of 1 mole of NaCl 
contains 2 moles of dissociated solute, 1 mole of the cation Na+ plus 1 mole of the anion Cl-. Such a 
solution is usually described as 1-molal (1 mol / (kg solvent)), referring to the salt originally dissolved 
(analytical concentration) as well as to the concentration of each of the two ionic species found in 
the solution. However, if 2 moles of NaCl are dissolved together with 1 mole of MgSO4, that is, 3 total 
moles of “salt”, the final solution is in no way different from that obtained by dissolving 1 mole of 
Na2SO4 and 1 mole of MgCl2, that is, of 2 total moles of “salt”. Unless the definition (B.13) and the 
Bjerrum relation (B.14) are specifically modified to compensate for the particular molality 
convention, the ambiguity of m may result in many different related osmotic coefficients for the 
same mixture, and may in turn also affect the results obtained for the mean activity coefficients. 

Ambiguity in specifying the moles of solute in seawater with given salinity has led to very different 
molalities being reported in the literature (Feistel and Marion, 2007). In the TEOS-10 standard, the 
ambiguity of seawater molality is tentatively resolved by a convention based on the ions and 
molecules of the sea-salt Reference Composition. The related standard-ocean molality is m = 
1.1605813 mol kg–1 (Millero et al., 2008). 

A more critical problem in multi-component systems arises due to the electroneutrality of the 
solution. That is, when the solute consists of at least two ionic species (one cation and one anion), 
only their mean activity coefficient (B.16) can be determined from experiments. Problems in 
measuring single-ion activities are discussed by Bjerrum (1919) and Guggenheim (1949). Single-ion 
activities cannot unambiguously be inferred from mean chemical potentials of electrically neutral 
combinations of ions. To overcome this problem, as in particular required for the calculation of pH, 
eq. (B.5), auxiliary assumptions are sometimes applied, such as equating the activities of the cations 
and the anions of a particular solute, as suggested for KCl by Lewis and Randall (1923). Such arbitrary 
practical “conventions” may reasonably be applied as long as they do not conflict with experimental 
evidence. On the other hand, the Debye-Hückel limiting law predicts that the ion activity is a well-
defined function of the ionic strength of very dilute electrolytes. Theoretical relations of this kind 
between activities and other measurable quantities (such as concentrations), for example, equations 
for single-ion activities derived from Pitzer equations, are in conflict with the putative arbitrariness of 
those conventions. 

In contrast to empirical thermodynamics, single-ion activities are well-defined quantities in the 
theoretical framework of statistical thermodynamics (Falkenhagen and Ebeling, 1971; Ebeling and 
Scherwinski, 1983; Prausnitz et al., 1999), but related analytical expressions such as the Debye-
Hückel limiting laws are available only for dilute solutions. At higher concentrations, microscopic 
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details of ion-ion and ion-solvent interactions become relevant. However, these are not precisely 
known and can only approximately be accounted for mathematically (Ebeling and Scherwinski, 1983). 
One practical way out of this situation is the use of so-called Pitzer equations, i.e., by approximating 
single-ion activities as series expansions with respect to the ion concentrations and to adjust the 
unknown empirical coefficients to measured data, such as to chemical mass-action laws (Nesbitt, 
1980; Marion and Grant, 1994; Prausnitz et al., 1999; Marion and Kargel, 2008; Marion et al., 2011). 
Of the best currently known Pitzer equations of seawater ions, consistency is excellent with respect 
to colligative properties while other properties such as sound speed may not yet be represented 
within experimental uncertainty (Feistel and Marion, 2007; Feistel, 2008; Sharp et al., 2015). 
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Appendix C: Definition of fugacity and relative fugacity for water in humid air 

 
Fugacity, fV, the "escaping tendency" (Lewis, 1901a, b) of water vapour in a gaseous mixture, is 
defined as (Prausnitz et al., 1999; Zeebe and Wolf-Gladrow, 2005; IUPAC, 2006) 
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where x is the mole fraction of water vapour in the mixture, µV is its mole-based chemical potential, 
and R is the molar gas constant. The fugacity has dimensions of pressure, eq. (C.2), and may be 
thought of as an “effective partial pressure” which deviates from the partial pressure, xp, at states 
away from the ideal-gas limit; see eq. (C.8) below. Although fugacity is a concept valid for arbitrary 
substances, here for water vapour the subscript V is used in order to distinguish the symbol for 
fugacity from that of the water-vapour enhancement factor,  f.  Also, for simplicity of the equations, 
the mole fraction is used here as the composition variable, in contrast to the mass fraction chosen in 
Appendix D. The conversion between the two is given by entry #8 of the derived quantities in that 
Appendix. 

The reference fugacity in eq. (C.1),  Tf 0

V , is a function of the temperature alone and is chosen to be 
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where id

V  is the chemical potential in the ideal-gas limit, i.e., 
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Here, p0 is an arbitrary constant pressure value. By definition, fugacities take only non-negative 
values. In explicit terms, the chemical potential of ideal-gas water vapour can be written in the 
mathematical form (Feistel et al., 2010) 
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where  Tcp

id  is the (pressure-independent) ideal-gas molar isobaric heat capacity of water vapour, 

and g0, T0, p0 are arbitrary constants, usually specified by reference-state conditions, see Appendix A. 
For example, in TEOS-10 the constants used for water vapour take the values (Feistel et al., 2010), g0 
= MW × 2 501 460.964 842 82 J kg–1, T0 = 273.16 K, p0 = 253 269 701 789.662 Pa, R = MW × 461.523 64 

J kg–1 K–1, where M W = 18.015 268 g mol–1 is the molar mass of water. The function  Tcp

id  is available 

from Cooper (1982) with an extension down to 50 K (IAPWS, 2012). 

Making use of eq. (C.4), eq. (C.2) leads to the expression 
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In eq. (C.1) the factor, λV,  
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is termed the (absolute) activity of water vapour in the mixture (Guggenheim, 1949, Kittel, 1969; see 
eq. (B.1)), and has the ideal-gas limit 
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Note that only differences of chemical potentials, rather than their absolute values, are physically 
relevant and measurable. Hence, while different activity definitions exist depending on additional 
conventions, fugacities are unambiguous. Up to moderate pressures, the fugacity of water in humid 
air can conveniently be calculated from a virial equation (Feistel et al., 2015; IAPWS, 2015) that is 
free of any arbitrary constants or reference states. 

The fugacity of a substance in a liquid or solid mixture is equal to the fugacity of that substance in a 
gaseous mixture which is in equilibrium with the given condensed phase (Guggenheim, 1949, §4.51). 
This approach is practically useful for substances such as ice for which the meaning of the zero-
pressure limit (C.3) is not obvious (Feistel and Wagner, 2007). 

The fugacity coefficient, V , is used to quantify the deviation of the fugacity from the partial 

pressure, in the form, 

    pTxxppTxf ,,,, VV  ;        (C.8) 

it equals id

VVV /   with the limiting property, 
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The relative fugacity, f , of water vapour in a gaseous mixture is defined as the fugacity of water 

vapour divided by the saturation fugacity, sat

Vf , (IOC et al., 2010; Feistel et al., 2010; Feistel, 2012), 
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Here, xsat is the mole fraction of water vapour in the gas mixture when it is in equilibrium with a 
liquid or solid reference phase at the same T and p, and λV and fV are given in eqs. (C.6) and (C.1), 
respectively. Note that solutions such as seawater are not used as reference phases; humid air in 
equilibrium with seawater is considered as subsaturated. 

Since at saturation the chemical potential of water in humid air equals that in the condensed phase, 
liquid or ice Ih, the relative fugacity of humid air with respect to liquid water can be written in the 
form (Feistel et al., 2010, IOC et al., 2010; Feistel, 2012; see also Appendix D) 

  
   







 


RT

pTpTx
pTxf

,,1,,
exp,, WV 

       (C.11) 

where µV and µW, respectively, are the chemical potentials of water in humid air and of pure liquid 
water. Note that here, for formal consistency with the vapour-phase notation, the argument “1” of 
µW represents the mole fraction of water in the liquid mixture, in contrast to Appendix B where often 
the solute molality, m, is the preferred composition variable, as common in solution chemistry. 
Below the freezing point, the chemical potential of liquid water, µW, in eq. (C.11) may be substituted 
by the chemical potential of ice, µIh. It is important that in the form of eq. (C.11), the relative fugacity 
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does not require an explicit definition of a gaseous saturation state and can reasonably be extended 
to conditions under which no stable saturation state of liquid water or ice exists, such as in contact 
with stable solutions at temperatures below the pure-phase freezing point or above the pure-water 
boiling point. For example, the vapour pressure of a saturated lithium chloride solution at 25 °C is 
353 Pa (Acheson, 1965), which is much smaller than the saturation vapour pressure of 3172 Pa below 
which no stable liquid pure-water phase exists at this temperature. If the vapour over this solution is 
admixed with dry air, the relative fugacity, eq. (C.11), of water in this mixture takes continuous 
values of 11.1 %rh over the whole pressure range from 353 Pa total pressure to atmospheric 
pressure (Wylie, 1965), smoothly crossing over the formal threshold at 3172 Pa below which the 
conventional definition of relative humidity ceases to exist. When expressing relative humidity in 
percent, the unit symbol %rh is preferably used here and in the Part 4 companion paper. 

Finally, we express the relative fugacity of water in the gas phase in terms of the chemical potential 
of water in an aqueous solution that is in equilibrium with humid air. From (C.6) and (C.10) we get 
 

  
 
 

   






 


RT

pTxpTx

pTx

pTx
pTxf

,,,,
exp

,,

,,
,,

sat

VV

sat






 .    (C.12) 

Equilibrium between gas and liquid is characterised by equal chemical potentials of all species in both 
phases. This applies to water in equilibrium between the given humid-air sample and a solution with 
the solvent mole fraction xW, 
 

   pTxpTx ,,,, WWV   ,        (C.13) 

 
and similarly, by definition of saturation, to that between saturated gas and liquid pure water, 
 

    pTpTx ,,1,, W

sat

V   .        (C.14) 

 
So we get for the relative fugacity of water in the gas phase,  
 

  
   

 pTma
RT

pTpTx
pTxf ,,

,,1,,
exp,, W

WWW 






 




 ,    (C.15) 

 
where the pure solvent is chosen as the reference state for the activity of water, aW, eq. (B.3), in a 
solution with solute molality m, and for the relative fugacity, eq. (C.14). We see that, when water 
vapour or humid air is in equilibrium with an aqueous solution, the relative fugacity of water in the 
gas phase is equal to the (relative) activity of water in the liquid phase, independent of the presence 
or absence of air, and of the nature of the solute (Hamer and Wu, 1972, eq. (3.1) therein; Feistel et 
al., 2010, eq. (10.14) therein; IOC et al., 2010, eq. 3.40.11 therein). Equation (C.15) may be used to 
produce reference materials of certified relative fugacity (Wylie, 1965; Acheson, 1965; Hamer and 
Wu, 1972; Greenspan, 1977), by e.g. the isopiestic method (Robinson, 1954).  
 
Relative fugacity is used for the description of moist solids (Ott, 1943; Kollmann and Côté, 1984; 
Köfinger et al., 2009). The relative fugacity of water vapour in humid air with respect to liquid water 
or ice as the reference substances is usually also termed "relative humidity" (Wylie, 1965; Kraus, 
1972; Greenspan, 1977; Kraus and Businger, 1994; Li and Chylek, 2012). 
 

The fugacity coefficient  pTx ,,V , eq. (C.8), can also be used to express the enhancement factor f, a 

frequently used humid-air property that was introduced by Goff (1949), see Appendix D. If we write 
eq. (C.14) for pure water vapour and denote the saturation pressure by esat(T), we have 
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    sat

W

sat

V ,,1,,1 eTeT   .        (C.16) 

 
By subtracting this equation from (C.14), we obtain a general relation between the enhancement 
factor and the fugacity coefficient 
 

    
 

 pT
pTx

eT
pTxf ,

,,

,,1
,,

sat

V

sat

Vsat 



 .       (C.17) 

 

Here,  pT ,  is the Poynting correction factor of liquid water (Prausnitz et al., 1999), 

 

  
     

 
 

  


















 

 
p

Te

ppTv
RTeT

pT

RT

eTpT
pT

sat

'd',
1

exp
,

,,,1,,1
exp, Wsat

W

W

sat

WW




 , (C.18) 

 
where λW is the (absolute) activity of liquid water, eq. (B.1), and vW is its molar volume.  
 
Eq. (C.17) does not account for the dissolution of air in water; if xsat is specified with respect to air-
saturated water, eq. (C.17) for the enhancement factor must be replaced by 
 

  
 

 
 

 pT
pTx

eT
x

Te

px
pTxf ,

,,

,,1
,,

sat

V

sat

V
Wsat

sat
sat 




 ,      (C.19) 

 
where xW is the solvent mole fraction in ideal-solution approximation (Feistel et al., 2015). Here, xW 

describes the Raoult effect,  pT ,  the Poynting effect, and the ratio of the fugacity coefficients 

represents the gas-phase interaction effect on the enhancement factor. Eq. (C.19) implies that the 
fugacity at saturation can be expressed by the relation 
 

          pTeTexpTxpxpTxfpTf ,,,1,,,,, sat

V

sat

W

sat

V

satsat

V

sat

V   ,   (C.20) 

 
and can be evaluated without explicit knowledge of the value of xsat if xW is set to unity or, if p > 
esat(T), is estimated by Henry’s law using ideal-solution and ideal-gas approximations, 
 

   Tepx sat

W 1   .         (C.21) 

 
Here, β is the reciprocal Henry’s constant of dry air defined by Herrmann et al. (2009).  
 
Similarly to eq. (C.20), the relation between relative fugacity and solvent activity, eq. (C.15), may also 
require correction for dissolved air. For the practical evaluation of eq. (C.20), numerically convenient 
correlation equations are available for esat(T) of saturated water vapour with respect to liquid water 

and to ice Ih (IAPWS, 1992, 2011; Wagner and Pruß, 1993; Wagner et al., 2011) and for fV and V of 
humid air in the form of a virial approximation (Feistel et al., 2015; IAPWS, 2015). 
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Appendix D: Example of an axiomatic approach to the definition of humid-air properties 

 
An "axiomatic" approach to relative humidity and related quantities could be based upon 
consistently specified thermodynamic potentials, such as those provided in IAPWS documents for 
liquid water, ice and humid air. Given these three empirical formulations (plus a few additional 
quantities such as molar masses or fundamental constants), all thermodynamic properties of humid 
air such as chemical potentials, vapour pressures, dew-point temperatures or relative humidities can 
first be formally defined and subsequently evaluated within this context, as well as subsequently 
evaluated quantitatively in a consistent, complete and accurate way. 
 
First the basic set of quantities considered as known a priori or defined externally (the “axioms”) are 
stated.  This set is axiomatic in the sense that it is  
a) independent in that none of its elements can in part or in toto be derived from other elements of 
the set,  
b) consistent in that it is impossible to derive from the set alternative, different results for the same 
derived quantity, and  
c) complete in that all quantities defined in a second step can/must be mathematically rigorously 
specified exclusively in terms of the “axioms”. 
 
The axiomatic set of nine basic quantities suggested here is: 
 

1. Pressure p: absolute, total, in-situ pressure to which the actual sample of humid air, aqueous 
liquid phase or ice is exposed. 

2. Temperature T: absolute, in-situ temperature2 of the actual sample of humid air, liquid water 
or ice. T is assumed here to be given on ITS-90. 

3. Air mass fraction A: mass fraction of dry air in the actual sample of humid air. 

4. Gibbs function gAV(A, T, p): Specific Gibbs energy of humid air expressed in terms of the 
independent variables A, T, p. As a thermodynamic potential, gAV provides all thermodynamic 
properties of humid air from algebraic combinations of its partial derivatives. 

5. Gibbs function gW(T, p): Specific Gibbs energy of liquid water expressed in terms of the 
independent variables T, p. As a thermodynamic potential, gW provides all thermodynamic 
properties of liquid water from algebraic combinations of its partial derivatives. The freely 
adjustable parameters of gW must be specified consistently with those of gAV, see App. A. 

6. Gibbs function gIh(T, p): Specific Gibbs energy of ice Ih expressed in terms of the 
independent variables T, p. As a thermodynamic potential, gIh provides all thermodynamic 
properties of ice Ih from algebraic combinations of its partial derivatives. The freely 
adjustable parameters of gIh must be specified consistently with those of gAV, see App. A. 

7. Molar mass MW: The molar mass of water is MW = 0.018 015 268 kg mol–1 (IAPWS, 2001). If 
the isotopic composition of water vapour in humid air is different from that of VSMOW3, 
such as by fractionation in evaporation (Jasechko et al., 2013), the composition must be 
specified rather than a single value for the molar mass. 

8. Molar mass MA: The molar mass of dry air is MA = 0.028 965 46 kg mol–1 (Picard et al., 2008). 
If the chemical or isotopic composition of dry air in humid air may vary, such as by a changing 

                                                 
2 also known as “dry-bulb temperature” in meteorology (WMO, 2008)  
3 VSMOW: Vienna Standard Mean Ocean Water (IAPWS, 2001) 
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fraction of CO2 or by dissolution of air in water, the composition must be specified rather 
than a single value for the molar mass (Picard et al., 2008). 

9. Molar gas constant4 R: The CODATA 2010 value is R = 8.314 4621 J K–1 mol–1 (Mohr et al., 
2012). 
Note that in the successively adopted IAPWS formulations used for TEOS-10, several slightly 
different, now obsolete values for R are specified. In principle, the value of R is not 
independent of the former basic quantities and can be obtained from the ideal-gas equation 

of state in the form of the mathematical limit  














pTg

p
p

T

M
R

p
,,0lim AV

0

W

, but this result 

will not exactly provide the most recent CODATA value if the TEOS-10 formula for gAV is used. 
Therefore, the R value of 2010 is introduced here additionally as an independent “exact” 
constant, consistent with the former basic quantities only within reasonable uncertainty. 

Note that there are various alternative possibilities of defining the axiomatic set, such as by using the 
IAPWS-95 Helmholtz function for fluid water (as a function of temperature and density) rather than 
by separate Gibbs function for liquid water (here, as basic item (5)) and for water vapour (here, as 
derived item #1, below). The actual choice made is a matter of convenience and purpose. 
 
The list of quantities that can be derived from the quantities (1) - (9) still obeys consistency but is no 
longer subject to requirements of independence or completeness. The list is extendable as required 
and is potentially unlimited. Provided the set of basic (“primary”) quantities is complete in the sense 
described above, derived (“secondary”) properties do not introduce any new empirical coefficients or 
correlations; they inherit their equations exclusively from those of the basic quantities. 

 
1. Gibbs function gV(T, p): The Gibbs function of water vapour is available from the Gibbs 

function of humid air in the limit of vanishing dry air, gV(T, p) = gAV(0, T, p). As a 
thermodynamic potential, gV provides all thermodynamic properties of water vapour from 
algebraic combinations of its partial derivatives. 

2. Chemical potential of water vapour V :   pT ,V  is computed from the Gibbs function of 

water vapour by the relation VV g . 

3. Chemical potential of liquid water W :   pT ,W  is computed from the Gibbs function of 

liquid water by the relation WW g . 

4. Chemical potential of ice Ih Ih :   pT ,Ih  is computed from the Gibbs function of ice Ih by 

the relation IhIh g . 

5. Triple point solid-liquid-gas of water (Tt, pt): Temperature and pressure of the common 
triple point of water are defined by the equations 

     tt

V

tt

W

tt

Ih ,,, pTpTpT   . 

6. Specific gas constants RW, RA: From the basic quantities (7), (8) and (9), the specific gas 

constants W

W /MRR   of water and A

A /MRR   of dry air are specified for convenience. 

7. Mole fraction xA: Using the basic quantities (3), (7) and (8), the mole fraction of dry air in 
humid air is computed from  

                                                 
4 The CODATA 2010 value reported here has recently been updated to R = 8.314 4598 J K−1 mol−1, http://physics.nist.gov/cgi-

bin/cuu/Value?r  

http://physics.nist.gov/cgi-bin/cuu/Value?r
http://physics.nist.gov/cgi-bin/cuu/Value?r
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  AW

A

A
//1

/

MAMA

MA
x


 . 

8. Mole fraction x: Using the basic quantities (3), (7) and (8), the mole fraction of water vapour 
in humid air is computed from  

 
  AW

W

//1

/1

MAMA

MA
x




 . 

9. Specific gas constant of humid air RAV: The molar gas constant, divided by the mass of one 
mole of humid air, is a linear function of the mass fraction A of dry air, in the form 

      WA

WA

AAV 1/ RAARxMMxRAR   

10. Gibbs function gAV,id(A, T, p): Specific Gibbs energy of ideal-gas humid air expressed in terms 
of the independent variables A, T, p. As a thermodynamic potential, gAV, id provides all 
thermodynamic properties of ideal-gas humid air from algebraic combinations of its partial 
derivatives. gAV, id is the mathematical low-pressure limit of gAV, obtained from the basic 
quantity (4) and the derived quantity (9), in the form  

   











0

AV

AV

0
0

AV

idAV, ln,,limln,,
p

p
TRpTAg

p

p
TRpTAg

p
. 

Here, p0 is an arbitrary constant pressure, such as p0 = 1 Pa, and is used here only to make 
the argument of the logarithm dimensionless. 

11. Chemical potential of water vapour in humid air AV

W :   pTx ,,AV

W  is computed from the 

Gibbs function of humid air by the relation   pTA AgAgAgg ,

AVAVAVAVAV

W /  and from 

(8). 

12. Chemical potential of ideal-gas water vapour in humid air idAV,

W :   pTx ,,idAV,

W  is computed 

from the Gibbs function of ideal-gas humid air (10) by the relation 

  pTA AgAgAgg ,

idAV,idAV,idAV,idAV,idAV,

W /  and from (8). 

13. Freezing temperature of water Tfrz: Tfrz(p) is computed implicitly from the equation for the 

phase equilibrium between liquid water and ice,    pTpT ,, frz

Ih

frz

W   . 

14. Saturated vapour pressure of water esat: esat(T) is computed implicitly from the equation for 

the phase equilibrium between liquid water and water vapour,    satVsatW ,, eTeT   . 

15. Sublimation pressure of ice esubl: esubl(T) is computed implicitly from the equation for the 

phase equilibrium between ice Ih and water vapour,    sublVsublIh ,, eTeT   . 

16. Specific humidity q: Specific humidity, or the mass fraction of water vapour in humid air, is 
computed by q = 1 – A. 

17. Partial pressure of water vapour pV: The partial pressure of water vapour in humid air is 
defined as pV = x p. 

18. Dew-point temperature Td: The dew-point temperature Td(x, p) associated with the actual 
humid-air sample is defined as the temperature at which a sample with the same pressure 

and composition is in equilibrium with liquid water,    pTpTx ,,, d

W

d

AV

W   .   
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19. Frost-point temperature Tf: The frost-point temperature Tf(x, p) associated with the actual 
humid-air sample is defined as the temperature at which a sample with the same pressure 

and composition is in equilibrium with ice,    pTpTx ,,, f

Ih

f

AV

W   . 

20. Saturated water-vapour mole fraction xsat: The saturated water-vapour mole fraction 
xsat(T, p), with respect to liquid water or ice, is found by solving the equation for the phase 

equilibrium between humid air and liquid water,    pTpTx ,,, WsatAV

W   , or the equation 

for the phase equilibrium between humid air and ice Ih,    pTpTx ,,, IhsatAV

W   , 

respectively. 

21. (a) Enhancement factor of saturated humid air f: The enhancement factor f of saturated 
humid air with respect to liquid water or ice, if T and p are known, is found by calculating 

   TepxpTf satsat /,   or    TepxpTf sublsat /,  , respectively. Here xsat, esat and esubl are 

determined using items (20), (14) and (15), respectively. 

(b) Enhancement factor of saturated humid air f: The enhancement factor f of saturated 
humid air with respect to liquid water or ice, if xsat and T are known, is computed implicitly 
from the equation for the phase equilibrium between liquid water and humid air, 

   satsatsatAV

W

satsatW /,,/, xfeTxxfeT   , or the equation for the phase equilibrium between 

ice Ih and humid air,    satsublsatAV

W

satsublIh /,,/, xfeTxxfeT   , respectively. Here esat(T) and 

esubl(T) are determined using items (14) and (15), respectively. 

22. (a) Fugacity of water vapour in humid air fV: In the real gas, the role of the partial pressure 

pV is played by the fugacity  
   







 


TR

pTxpTx
xppTxf

W

idAV,

W

AV

W
V

,,,,
exp,,


. 

(b) Fugacity of pure water vapour fV: For the absence of dry air, the limit 1x  can readily 
be carried out for the fugacity of water vapour, as 

 
       







 








 


TR

pTpT
p

TR

pTpT
ppTf

W

idV,V

W

idAV,

W

AV

W
V

,,
exp

,,1,,1
exp,,1


. 

 
23. Fugacity coefficient of water vapour in humid air 

V : The deviation of the fugacity from the 

partial pressure of water vapour, caused by non-ideal effects, is represented by the fugacity 

coefficient  
     







 


TR

pTxpTx
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pTxf
pTx

W

idAV,

W

AV

WV
V

,,,,
exp

,,
,,


  

24. Relative fugacity of humid air f : The relative fugacity of water vapour in humid air is 

defined as  
     

 pTxf

pTxf

TR

pTpTx
pTxf

,,

,,,,,
exp,,

sat

V

V

W

WAV

W 






 




  with respect to liquid 

water and  
     

 pTxf

pTxf

TR

pTpTx
pTxf

,,

,,,,,
exp,,

sat

V

V

W

IhAV

W 






 




  with respect to ice. 

25. Relative fugacity of water vapour f : In the limit of vanishing air, the relative fugacity of 

water vapour is  
   V W

W

, ,
1, , expf

T p T p
T p

R T

 


  
  

  

 with respect to liquid water, and 

 
   V Ih

W

, ,
1, , expf

T p T p
T p

R T

 


  
  

  

 with respect to ice. 
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26. Full-range relative humidity full: The relative humidity of moist air or water vapour is 

defined as  
 
 

 
   pTfTe

pxp

pTp

pxp
pTx

,

,

,

,
,,

sat

v

ref

v

v
full   where f(T, p) = 1 for esat(T) > p. 

In this list, if no arguments are reported explicitly, the actual (in-situ) arguments (x, T, p) are meant 
rather than those of any associated reference states, etc. 

The numerical values of derived, "secondary" quantities can be used to calculate arbitrary data tables 
to which suitable "tertiary" functions may be fitted for more convenient use, with well-known ranges 
of validity and consistency. 
 
While it is metrologically mandatory that any value computed for one of the above quantities, be it 
basic or derived, has to be accompanied by an uncertainty estimate, there is not yet any systematic 
method for adding the requisite information to the basic “axiomatic” quantities, and for extracting 
the uncertainty of a desired quantity from that basic information. It has been argued that it is 
necessary and sufficient to add to the basic correlation equations a set of covariance coefficients 
(Saunders, 2003; Cox and Harris, 2006; Lovell-Smith, 2009; Feistel, 2011; Strutz, 2011) along with the 
set of empirical coefficients. Considering the experimental uncertainties related to the original 
background data from which the basic equations were constructed (typically by numerical 
regression) is no longer necessary as soon as the covariance coefficients have been determined. In 
the special case of small uncertainties, the generation and algebraic manipulation of covariance 
matrices is consistent with methods recommended by BIPM et al. (2008a, b) and GUM (2011). More 
thorough investigation of this approach is warranted. 
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List of symbols used in the supplement 

 

Symbol Quantity Remarks 

A dry-air mass fraction of humid air  

A arbitrary constant (with subscripts) App A, B 

Asat dry-air mass fraction of saturated humid air App D 

a relative activity (with subscripts)  

a reduced practical activity  
 ma  molar activity App B 

B arbitrary constant (with subscripts) App A, B 
id

pc  ideal-gas molar isobaric heat capacity App C 

esat water-vapour pressure at saturation Pure water 

esubl sublimation pressure of ice Ih App D 

f water-vapour enhancement factor App D 

fV fugacity of water in vapour phase  
0

Vf  reference fugacity App C 

sat

Vf  fugacity of water in vapour phase at saturation  

G Gibbs energy App A 

Gex excess Gibbs free energy App B 

g0 arbitrary constant molar energy App C 

gAV specific Gibbs energy of humid air App D 

gIh specific Gibbs energy of hexagonal ice I  

gV specific Gibbs energy of water vapour App D 

gW specific Gibbs energy of liquid water App D 

g(m) molar Gibbs energy App A 

M sample mass  App A 

MA molar mass of dry air 
App D 
MA = 0.028 965 46 kg mol–1 

Mi mass of solute molecules App A 

MW molar mass of water 
App A, D 
M W = 0.018 015 268 kg mol–1 

MW mass of water molecules in solution App A 

m solute molality (with subscripts)  

mo standard-state molality mo = 1 mol kg−1 

N number of substances  

n number of moles (with subscripts)  

p absolute pressure  

p0 arbitrary constant pressure App C, D 

pH pH value  

pt triple-point pressure App D 

pV water-vapour partial pressure App D 

q specific humidity  

R molar gas constant5 R = 8.314 4621 J K–1 mol–1 

RA specific gas constant of dry air RA = R / MA, App D 

RAV specific gas constant of humid air App D 

RW specific gas constant of water RW = R / MW 

S solute mass fraction App A 

                                                 
5 The CODATA 2010 value reported here has recently been updated to R = 8.314 4598 J K−1 mol−1, http://physics.nist.gov/cgi-

bin/cuu/Value?r  

http://physics.nist.gov/cgi-bin/cuu/Value?r
http://physics.nist.gov/cgi-bin/cuu/Value?r
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T absolute temperature, ITS-90  

T0 arbitrary constant temperature App C 

Td dew-point temperature App D 

Tf frost-point temperature App D 

Tfrz freezing temperature App D 

Tt triple-point temperature App D 

vW molar volume of liquid water App C 

X composition variable (with subscripts) App A 

x mole fraction of water vapour  

xA mole fraction of dry air App D 

xsat mole fraction at saturation   

xW mole fraction of liquid water App C 
  reciprocal Henry’s constant of dry air App C 

V  fugacity coefficient of water vapour  

  osmotic coefficient App B, C 

 molal activity coefficient (with subscripts)  
 m  practical activity coefficient App B 

λ absolute activity App B 

µ chemical potential (with super/subscripts)  

  Poynting correction factor of liquid water App C 

 activity potential App B 

 relative humidity (with super/subscripts)  

full  relative humidity in the extended range, esat > p App D 

 


